The MISTIGRI thermal infrared project: scientific objectives and mission specifications

This article presents the MISTIGRI project of a microsatellite developed by the French space agency Centre National d'Etudes Spatiales (CNES) in cooperation with Spain (Image Processing Laboratory of the University of Valencia and Centro para el Desarrollo Tecnológico Industrial (CDTI)). MISTIGRI is a mission that has the originality of combining a high spatial resolution (∼50 m) with a daily revisit in the thermal infrared (TIR). MISTIGRI is an experimental mission devoted to demonstrate the potential of such TIR data for future operational missions. The scientific goals and expected applications of the mission are described: they encompass the monitoring of (i) agricultural areas and related hydrological processes, (ii) urban areas, and (iii) coastal areas and continental waters. Then, the specifications on spatial resolution, revisit frequency, overpass time, and spectral configuration are justified. The strategy of the mission is based on the combination with a network of long-term experimental sites. It will also make possible observing some areas facing rapid climatic change. The choice of the orbit is presented. Finally, we give rapid overviews of both the instrumental concept and the proposed mission architecture.

[1]  Elena Mauri,et al.  Satellite monitoring of summer heat waves in the Paris metropolitan area , 2011 .

[2]  A. A. Tronin,et al.  Satellite thermal survey—a new tool for the study of seismoactive regions , 1996 .

[3]  Lionel Alletto,et al.  Effects of temperature and water content on degradation of isoproturon in three soil profiles. , 2006, Chemosphere.

[4]  J. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests , 2008 .

[5]  Alice Belot Simulation des échanges d'énergie et de masse d'un couvert végétal : développement et validation d'un modèle quasi 3D, DART-EB , 2007 .

[6]  S. Schneider,et al.  A contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernment Panel on Climate Change , 2001 .

[7]  Albert Olioso,et al.  Interest of mid‐morning acquisition of surface temperature for deriving surface fluxes , 1995 .

[8]  M. Bierkens,et al.  Assimilation of remotely sensed latent heat flux in a distributed hydrological model , 2003 .

[9]  Anu Reinart,et al.  Mapping surface temperature in large lakes with MODIS data , 2008 .

[10]  Lee-Lueng Fu The Surface Water and Ocean Topography (SWOT) Mission , 2010 .

[11]  H. G. Huang,et al.  Coupling the CUPID and TRGM Models to Study the Temporal Variations of Thermal Emission Directionality of Crop Canopies , 2009 .

[12]  T. Carlson An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery , 2007, Sensors (Basel, Switzerland).

[13]  Jean-Pierre Lagouarde,et al.  Modelling Daytime Thermal Infrared Directional Anisotropy over Toulouse City Centre , 2010 .

[14]  Andrew N. French,et al.  Disaggregation of GOES land surface temperatures using surface emissivity , 2009 .

[15]  Timothy R. Oke,et al.  A Model to Calculate what a Remote Sensor `Sees' of an Urban Surface , 2004 .

[16]  V. Garçon,et al.  Nitrogen transfers and air-sea N2O fluxes in the upwelling off Namibia within the oxygen minimum zone: a 3-D model approach , 2011 .

[17]  V. Masson,et al.  Anthropogenic heat release in an old European agglomeration (Toulouse, France) , 2007 .

[18]  Michael Rast,et al.  Remote sensing applications in hydrological modeling , 1995, Remote Sensing.

[19]  Albert Olioso,et al.  Assessing the narrowband to broadband conversion to estimate visible, near infrared and shortwave apparent albedo from airborne PolDER data , 2002 .

[20]  Dudley B. Chelton,et al.  Summertime Coupling between Sea Surface Temperature and Wind Stress in the California Current System , 2007 .

[21]  V. Masson Urban surface modeling and the meso-scale impact of cities , 2006 .

[22]  Claude R. Duguay,et al.  Using the MODIS land surface temperature product for mapping permafrost: an application to northern Québec and Labrador, Canada , 2009 .

[23]  A. French,et al.  Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States , 2008 .

[24]  Y. Kerr,et al.  Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat-2 images , 2010 .

[25]  F. Baret,et al.  Quantifying spatial heterogeneity at the landscape scale using variogram models , 2006 .

[26]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .

[27]  I. Grierson,et al.  Use of Airborne Thermal Imagery to Detect and Monitor Inshore Oil Spill Residues During Darkness Hours , 1998, Environmental management.

[28]  V. Garçon,et al.  Coupling physical and biogeochemical processes in the Río de la Plata plume , 2005 .

[29]  Philippe Lagacherie,et al.  Mapping Daily Evapotranspiration Over a Mediterranean Vineyard Watershed , 2011, IEEE Geoscience and Remote Sensing Letters.

[30]  Alan R. Gillespie,et al.  Accuracy of ASTER Level-2 thermal-infrared Standard Products of an agricultural area in Spain , 2007 .

[31]  Jason Budinoff,et al.  The Thermal Infrared Sensor on the Landsat Data Continuity Mission , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[32]  Catherine Ottlé,et al.  An improved SVAT model calibration strategy based on the optimisation of surface temperature temporal dynamics , 2007 .

[33]  J. Lagouarde,et al.  Experimental study of brightness surface temperature angular variations of maritime pine (Pinus pinaster) stands. , 2000 .

[34]  T. Carlson,et al.  Satellite Estimation of the Surface Energy Balance, Moisture Availability and Thermal Inertia. , 1981 .

[35]  Prasanjit Dash,et al.  Separating surface emissivity and temperature using two-channel spectral indices and emissivity composites and comparison with a vegetation fraction method , 2005 .

[36]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[37]  F. Jacoba,et al.  Mapping short-wave albedo of agricultural surfaces using airborne PolDER data , 2001 .

[38]  Gérard Dedieu,et al.  A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images , 2010 .

[39]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[40]  G. Boulet,et al.  A methodology to test the pertinence of remote-sensing data assimilation into vegetation models for water and energy exchange at the land surface , 2004 .

[41]  Jeffrey L. Privette,et al.  Directional effects in a daily AVHRR land surface temperature dataset over Africa , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[42]  José A. Sobrino,et al.  Land surface temperature retrieval from LANDSAT TM 5 , 2004 .

[43]  R. Pachauri Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report , 2008 .

[44]  James R. Irons,et al.  Status of the landsat data continuity mission , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[45]  T. Jacksona,et al.  Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa , 2004 .

[46]  Simon J. Hook,et al.  Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements , 2010 .

[47]  Shattri Mansor,et al.  Monitoring of underground coal fires using thermal infrared data , 1994 .

[48]  J. A. Voogta,et al.  Thermal remote sensing of urban climates , 2003 .

[49]  J. Kerkmann,et al.  Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI measurements , 2007 .

[50]  H. Fischer,et al.  Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends , 2002 .

[51]  Toby N. Carlson,et al.  The impact of land use — land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective , 2000 .

[52]  W. Verhoef,et al.  An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance , 2009 .

[53]  Marc Voltz,et al.  Aging effects on the availability of herbicides to runoff transfer. , 2007, Environmental science & technology.

[54]  Philippe Lagacherie,et al.  Comparison of two temperature differencing methods to estimate daily evapotranspiration over a Mediterranean vineyard watershed from ASTER data , 2011 .

[55]  Wilfried Brutsaert,et al.  Catchment‐Scale Evaporation and the Atmospheric Boundary Layer , 1986 .

[56]  Bo-Hui Tang,et al.  An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation , 2010 .

[57]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[58]  Z. Li,et al.  Temperature-independent spectral indices in thermal infrared bands , 1990 .

[59]  F. Solmon,et al.  A simple modeling approach to study the regional impact of a Mediterranean forest isoprene emission on anthropogenic plumes , 2004 .

[60]  L. R. Beck,et al.  Perspectives Perspectives Perspectives Perspectives Perspectives Remote Sensing and Human Health: New Sensors and New Opportunities , 2022 .

[61]  G. Dedieu,et al.  Influence of agricultural practices on micrometerological spatial variations at local and regional scales , 2009 .

[62]  Alan R. Gillespie,et al.  Field validation of the ASTER Temperature–Emissivity Separation algorithm , 2009 .

[63]  Albert Rango,et al.  Temperature and emissivity separation from multispectral thermal infrared observations , 2002 .

[64]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[65]  Dara Entekhabi,et al.  The Diurnal Behavior of Evaporative Fraction in the Soil-Vegetation-Atmospheric Boundary Layer Continuum , 2011 .

[66]  Jean-Pierre Wigneron,et al.  Estimation of Evapotranspiration and Photosynthesis by Assimilation of Remote Sensing Data into SVAT Models , 1999 .

[67]  W. Bastiaanssen,et al.  A remote sensing surface energy balance algorithm for land (SEBAL). , 1998 .

[68]  David P. Roy,et al.  Continuity of Landsat observations: Short term considerations , 2011 .

[69]  Albert Olioso,et al.  Mapping surface fluxes using airborne visible, near infrared, thermal infrared remote sensing data and a spatialized surface energy balance model , 2002 .

[70]  M. S. Moran,et al.  Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland , 1996 .

[71]  Le Jiang,et al.  A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations , 1999 .

[72]  Peter J. Minnett,et al.  Successes and Challenges for the Modern Sea Surface Temperature Observing System , 2010 .

[73]  Thomas J. Jackson,et al.  Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa , 2004 .

[74]  R. Fensholt,et al.  Evaluation of satellite based primary production modelling in the semi-arid Sahel , 2006 .

[75]  M. Romaguera,et al.  Thermal remote sensing in the framework of the SEN2FLEX project: field measurements, airborne data and applications , 2008 .

[76]  Albert Olioso,et al.  Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain) , 2009 .

[77]  E. Noordman,et al.  SEBAL model with remotely sensed data to improve water-resources management under actual field conditions , 2005 .

[78]  Jianhua Liu,et al.  Satellite Thermal Infrared Earthquake Precursor to the Wenchuan Ms 8.0 Earthquake in Sichuan, China, and its Analysis on Geo‐dynamics , 2009 .

[79]  Z. Su The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes , 2002 .

[80]  Albert Olioso,et al.  Retrieval of evapotranspiration over the Alpilles/ReSeDA experimental site using airborne POLDER sensor and a thermal camera , 2005 .

[81]  Aurélien Hénon Températures mesurées, modélisées, et observées par télédétection infrarouge, dans la canopée urbaine : modélisation aéro-thermo-radiative des flux de chaleur urbains , 2008 .

[82]  Xavier Briottet,et al.  Thermal infrared radiance simulation with aggregation modeling (TITAN): an infrared radiative transfer model for heterogeneous three-dimensional surface--application over urban areas. , 2008, Applied optics.

[83]  Lee-Lueng Fu,et al.  Observing Oceanic Submesoscale Processes From Space , 2008 .

[84]  B. Séguin,et al.  Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches , 2005 .

[85]  T. Schmugge,et al.  Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors , 2004 .

[86]  J. El-Kharraz,et al.  Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site , 2004 .

[87]  Zhongbo Su,et al.  Estimation of Land Surface Heat Fluxes over the Tibetan Plateau Using GMS Data , 2007 .

[88]  Yasushi Yamaguchi,et al.  Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux , 2005 .

[89]  C. Ottlé,et al.  Future directions for advanced evapotranspiration modeling: Assimilation of remote sensing data into crop simulation models and SVAT models , 2005 .

[90]  A. Harris,et al.  Automated volcanic eruption detection using MODIS , 2001 .

[91]  A. Clappier,et al.  An Urban Surface Exchange Parameterisation for Mesoscale Models , 2002 .

[92]  Thomas Foken,et al.  A SVAT scheme for NO, NO2, and O3 — Model description and test results , 1996 .

[93]  J. A. Sobrino,et al.  Surface temperature and water vapour retrieval from MODIS data , 2003 .

[94]  Matthew F. McCabe,et al.  Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA) , 2005 .

[95]  Massimo Menenti,et al.  S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance , 2000 .

[96]  A. Arnfield Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island , 2003 .

[97]  V. Realmuto,et al.  Multispectral thermal infrared mapping of sulfur dioxide plumes: A case study from the East Rift Zone of Kilauea Volcano, Hawaii , 1997 .

[98]  J. Privette,et al.  Modeling and Inversion in Thermal Infrared Remote Sensing over Vegetated Land Surfaces , 2008 .

[99]  J. Comiso Warming trends in the Arctic from clear sky satellite observations , 2003 .

[100]  Paul D. Colaizzi,et al.  Utility of thermal sharpening over Texas high plains irrigated agricultural fields , 2007 .

[101]  P. F. Hamblin,et al.  Observations, Evaporation and Preliminary Modelling of Over-Lake Meteorology on Large African Lakes , 2002 .

[102]  Yann Kerr,et al.  IRSUTE: A Minisatellite Project for Land Surface Heat Flux Estimation from Field to Regional Scale , 1999 .

[103]  Wolfgang Wagner,et al.  The potential of multidiurnal MODIS thermal band data for coal fire detection , 2008 .

[104]  Hussein M. Yahia,et al.  Motion analysis in oceanographic satellite images using multiscale methods and the energy cascade , 2010, Pattern Recognit..

[105]  David R. Montgomery,et al.  Crater-fault interactions: A metric for dating fault zones on planetary surfaces , 2009 .

[106]  Britta Kurz Modélisation de l'anisotropie directionnelle de la température de surface : application au cas de milieux forestiers et urbains , 2009 .

[107]  Wade T. Crow,et al.  Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model , 2008 .

[108]  Parag Vaze,et al.  The SWOT (Surface Water and Ocean Topography) Mission: Spaceborne Radar Interferometry for Oceanographic and Hydrological Applications , 2009 .

[109]  A. Hsu,et al.  Detecting land cover change at the Jornada Experimental Range, New Mexico with ASTER emissivities , 2008 .

[110]  Gérard Dedieu,et al.  VENµS (Vegetation and environment monitoring on a new micro satellite) , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[111]  Jean-Pierre Wigneron,et al.  Multidimensional Disaggregation of Land Surface Temperature Using High-Resolution Red, Near-Infrared, Shortwave-Infrared, and Microwave-L Bands , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[112]  François Anctil,et al.  Thermal‐water stress index from satellite images , 2006 .

[113]  Pierre Gentine,et al.  Monitoring water stress using time series of observed to unstressed surface temperature difference , 2007 .

[114]  T. Schmugge,et al.  Recovering Surface Temperature and Emissivity from Thermal Infrared Multispectral Data , 1998 .

[115]  W. Emery,et al.  Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology , 1989 .

[116]  Alain Royer,et al.  Analysis of Temperature Emissivity Separation (TES) algorithm applicability and sensitivity , 2004 .

[117]  M. S. Moran,et al.  Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index , 1994 .