Supraconservative Finite-Volume Methods for the Euler Equations of Subsonic Compressible Flow

[1]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[2]  Maxim A. Olshanskii,et al.  Unconditional long-time stability of a velocity–vorticity method for the 2D Navier–Stokes equations , 2017, Numerische Mathematik.

[3]  Gareth P. Williams,et al.  Conservation properties of convection difference schemes , 1970 .

[4]  O. Lehmkuhl,et al.  On the flow past a circular cylinder from critical to super-critical Reynolds numbers: Wake topology and vortex shedding , 2015 .

[5]  Oriol Lehmkuhl,et al.  Unsteady forces on a circular cylinder at critical Reynolds numbers , 2014 .

[6]  C. Vuik,et al.  A fully conservative mimetic discretization of the Navier-Stokes equations in cylindrical coordinates with associated singularity treatment , 2016, J. Comput. Phys..

[7]  Stephen J. Thomas,et al.  A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid , 2007 .

[8]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[9]  Parviz Moin,et al.  Minimum-dissipation models for large-eddy simulation , 2015 .

[10]  Antony Jameson,et al.  High-Order Flux Reconstruction Schemes with Minimal Dispersion and Dissipation , 2015, J. Sci. Comput..

[11]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[12]  Jian-Guo Liu,et al.  Convergence Analysis of the Energy and Helicity Preserving Scheme for Axisymmetric Flows , 2006, SIAM J. Numer. Anal..

[13]  F. Xavier Trias,et al.  Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids , 2014, J. Comput. Phys..

[14]  Norman A. Phillips,et al.  The general circulation of the atmosphere: A numerical experiment , 1956 .

[15]  Yuzhi Sun,et al.  Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow , 2006, J. Comput. Phys..

[16]  Maxim A. Olshanskii,et al.  On the accuracy of the rotation form in simulations of the Navier-Stokes equations , 2009, J. Comput. Phys..

[17]  H. C. Yee,et al.  Entropy Splitting and Numerical Dissipation , 2000 .

[18]  Arthur Veldman,et al.  A symmetry-preserving discretisation and regularisation model for compressible flow with application to turbulent channel flow , 2014 .

[19]  Jan Nordström,et al.  A new high order energy and enstrophy conserving Arakawa-like Jacobian differential operator , 2015, J. Comput. Phys..

[20]  Jens Brouwer,et al.  Conservative time integrators of arbitrary order for skew-symmetric finite-difference discretizations of compressible flow , 2014 .

[21]  Antony Jameson,et al.  Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra , 2013, Journal of Scientific Computing.

[22]  Leo G. Rebholz,et al.  An Energy- and Helicity-Conserving Finite Element Scheme for the Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..

[23]  Towards the ultimate variance-conserving convection scheme , 2004 .

[24]  Sergio Pirozzoli,et al.  Generalized conservative approximations of split convective derivative operators , 2010, J. Comput. Phys..

[25]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[26]  O. Vasilyev,et al.  Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations , 2004 .

[27]  Enzo Tonti,et al.  Why starting from differential equations for computational physics? , 2014, J. Comput. Phys..

[28]  Marc I. Gerritsma,et al.  A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations , 2016, J. Comput. Phys..

[29]  Julius Reiss,et al.  A conservative, skew-symmetric Finite Difference Scheme for the compressible Navier--Stokes Equations , 2013, 1308.6672.

[30]  L. Quartapelle,et al.  A projection FEM for variable density incompressible flows , 2000 .

[31]  Alexandra Claisse,et al.  Energy preservation and entropy in Lagrangian space- and time-staggered hydrodynamic schemes , 2016, J. Comput. Phys..

[32]  Leo G. Rebholz,et al.  A note on the importance of mass conservation in long-time stability of Navier-Stokes simulations using finite elements , 2015, Appl. Math. Lett..

[33]  J. Blair Perot,et al.  Differential forms for scientists and engineers , 2014, J. Comput. Phys..

[34]  Zhi Jian Wang,et al.  A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids , 2009, J. Comput. Phys..

[35]  D. Serre Helicity and other conservation laws in perfect fluid motion , 2018 .

[36]  Zhi J. Wang,et al.  Evaluation of discontinuous Galerkin and spectral volume methods for scalar and system conservation laws on unstructured grids , 2004 .

[37]  H. K. Moffatt,et al.  Helicity in Laminar and Turbulent Flow , 1992 .

[38]  F. X. Trias,et al.  An energy-preserving level set method for multiphase flows , 2020, J. Comput. Phys..

[39]  Antony Jameson,et al.  Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra , 2014, J. Sci. Comput..

[40]  Vincent Guinot,et al.  High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes , 2000 .

[41]  J. Blair Perot,et al.  Discrete calculus methods for diffusion , 2007, J. Comput. Phys..

[42]  Thomas S. Lund,et al.  Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow , 2006, J. Comput. Phys..

[43]  Sergio Pirozzoli,et al.  Numerical Methods for High-Speed Flows , 2011 .

[44]  B. van 't Hof,et al.  Symmetry-preserving finite-difference discretizations of arbitrary order on structured curvilinear staggered grids , 2019, J. Comput. Sci..

[45]  Arthur Veldman,et al.  A general condition for kinetic-energy preserving discretization of flow transport equations , 2019, J. Comput. Phys..

[46]  Antony Jameson,et al.  Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes , 2008, J. Sci. Comput..

[47]  A. B. Strong,et al.  A Fully Conservative Second-Order Finite Difference Scheme for Incompressible Flow on Nonuniform Grids , 2002 .

[48]  M. Oberlack,et al.  Generalized Ertel’s theorem and infinite hierarchies of conserved quantities for three-dimensional time-dependent Euler and Navier–Stokes equations , 2014, Journal of Fluid Mechanics.

[49]  J. Blair Perot,et al.  Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .

[50]  M. Shashkov,et al.  Support-operator finite-difference algorithms for general elliptic problems , 1995 .

[51]  Guus S. Stelling,et al.  A staggered conservative scheme for every Froude number in rapidly varied shallow water flows , 2003 .

[52]  H. C. Yee,et al.  Entropy Splitting for High Order Numerical Simulation of Compressible Turbulence , 2002 .

[53]  Arthur E. P. Veldman "Missing" Boundary Conditions? Discretize First, Substitute Next, and Combine Later , 1990, SIAM J. Sci. Comput..

[54]  K. Horiuti,et al.  Comparison of conservative and rotational forms in large Eddy simulation of turbulent channel flow , 1987 .

[55]  Charles L. Merkle,et al.  Comparison of artificial-dissipation and solution-filtering stabilization schemes for time-accurate simulations , 2018, J. Comput. Phys..

[56]  Magnus Svärd,et al.  Steady-State Computations Using Summation-by-Parts Operators , 2005, J. Sci. Comput..

[57]  Parviz Moin,et al.  Higher entropy conservation and numerical stability of compressible turbulence simulations , 2004 .

[58]  Shashank,et al.  A co-located incompressible Navier-Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit , 2010, J. Comput. Phys..

[59]  Gianmarco Manzini,et al.  A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems , 2011 .

[60]  Luigi de Luca,et al.  Explicit Runge-Kutta schemes for incompressible flow with improved energy-conservation properties , 2017, J. Comput. Phys..

[61]  Anil N. Hirani,et al.  Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus , 2008, ArXiv.

[62]  Gregor J. Gassner,et al.  A kinetic energy preserving nodal discontinuous Galerkin spectral element method , 2014 .

[63]  Pramod K. Subbareddy,et al.  A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows , 2009, J. Comput. Phys..

[64]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[65]  Sergio Pirozzoli,et al.  Numerically stable formulations of convective terms for turbulent compressible flows , 2018, J. Comput. Phys..

[66]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2007, TOGS.

[67]  Maxim A. Olshanskii,et al.  Velocity-vorticity-helicity formulation and a solver for the Navier-Stokes equations , 2010, J. Comput. Phys..

[68]  Julius Reiss,et al.  A Family of Energy Stable, Skew-Symmetric Finite Difference Schemes on Collocated Grids , 2014, J. Sci. Comput..

[69]  Koji Fukagata,et al.  Highly energy-conservative finite difference method for the cylindrical coordinate system , 2002 .

[70]  A. Veldman,et al.  Low-Dissipation Simulation Methods and Models for Turbulent Subsonic Flow , 2020, Archives of Computational Methods in Engineering.

[71]  Sergio Pirozzoli,et al.  Stabilized non-dissipative approximations of Euler equations in generalized curvilinear coordinates , 2011, J. Comput. Phys..

[72]  Daniel Fuster,et al.  An energy preserving formulation for the simulation of multiphase turbulent flows , 2013, J. Comput. Phys..

[73]  Jing Gong,et al.  A stable and conservative high order multi-block method for the compressible Navier-Stokes equations , 2009, J. Comput. Phys..

[74]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[75]  J. C. Kok,et al.  A high-order low-dispersion symmetry-preserving finite-volume method for compressible flow on curvilinear grids , 2009, J. Comput. Phys..

[76]  M. Olshanskii,et al.  Efficient discretizations for the EMAC formulation of the incompressible Navier–Stokes equations , 2017, Applied Numerical Mathematics.

[77]  A. Llor,et al.  A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid , 2020 .

[78]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[79]  Oleg V. Vasilyev High Order Finite Difference Schemes on Non-uniform Meshes with Good Conservation Properties , 2000 .

[80]  Arthur E. P. Veldman,et al.  Numerical simulation with low artificial dissipation of transitional flow over a delta wing , 2020, J. Comput. Phys..

[81]  Oriol Lehmkuhl,et al.  Assessment of the symmetry-preserving regularization model on complex flows using unstructured grids , 2012 .

[82]  Benjamin Sanderse,et al.  Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations , 2013, J. Comput. Phys..

[83]  Yohei Morinishi,et al.  Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows , 2010, J. Comput. Phys..

[84]  M. Olshanskii,et al.  On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions , 2018 .

[85]  D. Schmidt,et al.  Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics , 2002 .

[86]  Ramesh K. Agarwal,et al.  COMPUTATIONAL FLUID DYNAMICS OF WHOLE-BODY AIRCRAFT , 1999 .

[87]  Arthur E. P. Veldman,et al.  Mass, momentum and energy conserving (MaMEC) discretizations on general grids for the compressible Euler and shallow water equations , 2012, J. Comput. Phys..

[88]  Raphaël Loubère,et al.  Volume consistency in a staggered grid Lagrangian hydrodynamics scheme , 2008, J. Comput. Phys..

[89]  Anil N. Hirani,et al.  Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes , 2015, J. Comput. Phys..

[90]  T. A. Zang,et al.  On the rotation and skew-symmetric forms for incompressible flow simulations , 1991 .

[91]  A. Oliva,et al.  A low-dissipation convection scheme for the stable discretization of turbulent interfacial flow , 2017 .

[92]  Praveen Chandrashekar,et al.  Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations , 2012, ArXiv.

[93]  Paul J. Dellar,et al.  An energy and potential enstrophy conserving numerical scheme for the multi-layer shallow water equations with complete Coriolis force , 2016, J. Comput. Phys..

[94]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[95]  Guillaume Houzeaux,et al.  A low-dissipation finite element scheme for scale resolving simulations of turbulent flows , 2019, J. Comput. Phys..

[96]  Jason Frank,et al.  Statistical mechanics of Arakawa's discretizations , 2007, J. Comput. Phys..

[97]  Leo G. Rebholz,et al.  Enforcing energy, helicity and strong mass conservation in finite element computations for incompressible Navier-Stokes simulations , 2011, Appl. Math. Comput..

[98]  H. T. Huynh,et al.  High-Order Methods for Computational Fluid Dynamics: A Brief Review of Compact Differential Formulations on Unstructured Grids , 2013 .

[99]  F. Xavier Trias,et al.  Conservation Properties of Unstructured Finite-Volume Mesh Schemes for the Navier-Stokes Equations , 2014 .

[100]  Margot Gerritsen,et al.  Designing an efficient solution strategy for fluid flows. 1. A stable high order finite difference scheme and sharp shock resolution for the Euler equations , 1996 .

[101]  B. Perot Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .

[102]  Maxim A. Olshanskii,et al.  On conservation laws of Navier-Stokes Galerkin discretizations , 2016, J. Comput. Phys..

[103]  Gennaro Coppola,et al.  Discrete Energy-Conservation Properties in the Numerical Simulation of the Navier–Stokes Equations , 2019, Applied Mechanics Reviews.

[104]  Gregory A. Blaisdell,et al.  The effect of the formulation of nonlinear terms on aliasing errors in spectral methods , 1996 .