Enhancing the dielectric relaxor behavior and energy storage properties of 0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3 ceramics through the incorporation of paraelectric SrTiO3

[1]  Shengtao Li,et al.  Enhanced energy storage property in glass-added Ba(Zr0.2Ti0.8)O3-0.15(Ba0.7Ca0.3)TiO3 ceramics and the charge relaxation , 2019, Ceramics International.

[2]  Xihong Hao,et al.  Ultra-high energy-storage density and fast discharge speed of (Pb0.98−xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via the tape-casting method , 2019, Journal of Materials Chemistry A.

[3]  S. K. Rout,et al.  Structural, piezoelectric and highdensity energy storage properties of lead-free BNKT-BCZT solid solution , 2019, Journal of Alloys and Compounds.

[4]  K. Zhou,et al.  Silver niobate based lead-free ceramics with high energy storage density , 2019, Journal of Materials Chemistry A.

[5]  M. Gomes,et al.  Composition-dependent xBa(Zr0.2Ti0.8)O3-(1-x)(Ba0.7Ca0.3)TiO3 bulk ceramics for high energy storage applications , 2019, Ceramics International.

[6]  X. Chao,et al.  Submicron barium calcium zirconium titanate ceramic for energy storage synthesised via the co-precipitation method , 2019, Materials Research Bulletin.

[7]  X. Dong,et al.  Combining high energy efficiency and fast charge-discharge capability in novel BaTiO3-based relaxor ferroelectric ceramic for energy-storage , 2019, Ceramics International.

[8]  M. Gomes,et al.  High‐Performance Ferroelectric–Dielectric Multilayered Thin Films for Energy Storage Capacitors , 2018, Advanced Functional Materials.

[9]  X. Dong,et al.  Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field , 2018 .

[10]  H. Du,et al.  Ultrahigh energy density and improved discharged efficiency in bismuth sodium titanate based relaxor ferroelectrics with A-site vacancy , 2018, Journal of Materiomics.

[11]  Geon‐Tae Hwang,et al.  High‐Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook , 2018, Advanced Functional Materials.

[12]  X. Dong,et al.  Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability , 2018 .

[13]  H. Yan,et al.  Perovskite Srx(Bi1−xNa0.97−xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage , 2018, Nano Energy.

[14]  Fei Yan,et al.  Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure , 2018 .

[15]  Lin Gan,et al.  Sintering process effect on the BaTiO3 ceramic properties with the hydrothermally prepared powders , 2018, Journal of Materials Science: Materials in Electronics.

[16]  S. Mane,et al.  Hybrid microwave sintering and shifting of Tc in lead-free ferroelectric composition x(Ba 0.7 Ca 0.3 TiO 3 )-(1-x)(BaZr 0.2 Ti 0.8 O 3 ) , 2018, Materials Chemistry and Physics.

[17]  Qinghua Zhang,et al.  Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering , 2018, Nature Communications.

[18]  Qing Xu,et al.  Contributions of intrinsic and extrinsic polarization species to energy storage properties of Ba 0.95 Ca 0.05 Zr 0.2 Ti 0.8 O 3 ceramics , 2018 .

[19]  Hong Wang,et al.  Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties , 2017 .

[20]  Jie Luo,et al.  Antiferroelectric to relaxor ferroelectric phase transition in PbO modified (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics with a large energy-density for dielectric energy storage , 2017 .

[21]  Fei Yan,et al.  High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics , 2017, Scientific Reports.

[22]  S. Underwood,et al.  Challenges and approaches for particle size analysis on micrographs of nanoparticles loaded onto textile surfaces , 2017 .

[23]  Longtu Li,et al.  Enhanced Energy-Storage Density and High Efficiency of Lead-Free CaTiO3-BiScO3 Linear Dielectric Ceramics. , 2017, ACS applied materials & interfaces.

[24]  M. Lanagan,et al.  Homogeneous/Inhomogeneous‐Structured Dielectrics and their Energy‐Storage Performances , 2017, Advanced materials.

[25]  X. Ren,et al.  Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon , 2017, Scientific Reports.

[26]  Qing Xu,et al.  Dielectric nonlinearity and electric breakdown behaviors of Ba0.95Ca0.05Zr0.3Ti0.7O3 ceramics for energy storage utilizations , 2016 .

[27]  Jiafu Wang,et al.  Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics , 2016 .

[28]  T. Karthik,et al.  Structural, ferroelectric and piezoelectric properties of chemically processed, low temperature sintered piezoelectric BZT–BCT ceramics , 2016 .

[29]  Guohua Chen,et al.  Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping , 2016 .

[30]  Hongliang Du,et al.  Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability , 2016 .

[31]  Danyang Wang,et al.  Compositional dependence of electrocaloric effect in lead-free (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics , 2016 .

[32]  J. P. B. Silva,et al.  Ferroelectric phase transitions studies in 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramics , 2015, Journal of Electroceramics.

[33]  T. Jackson,et al.  Flexible high-temperature dielectric materials from polymer nanocomposites , 2015, Nature.

[34]  Qi Zhang,et al.  Giant Electric Energy Density in Epitaxial Lead‐Free Thin Films with Coexistence of Ferroelectrics and Antiferroelectrics , 2015 .

[35]  Y. Gong,et al.  Dielectric Dispersion, Diffuse Phase Transition, and Electrical Properties of BCT–BZT Ceramics Sintered at a Low-Temperature , 2015, Journal of Electronic Materials.

[36]  C. S. Hwang,et al.  Thin HfxZr1‐xO2 Films: A New Lead‐Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability , 2014 .

[37]  B. Peng,et al.  Improvement of the recoverable energy storage density and efficiency by utilizing the linear dielectric response in ferroelectric capacitors , 2014 .

[38]  Xihong Hao,et al.  Energy-storage properties and electrocaloric effect of Pb(1-3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. , 2014, ACS applied materials & interfaces.

[39]  E. Chavez,et al.  Influence of reactant type on the Sr incorporation grade and structural characteristics of Ba1-xSrxTiO3 (x=0-1) grown by sol-gel-hydrothermal synthesis , 2013 .

[40]  M. Arenz,et al.  The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. , 2013, Nature materials.

[41]  A. Kholkin,et al.  Synthesis and characterization of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic , 2013 .

[42]  Venkata Sreenivas Puli,et al.  Structure, dielectric, ferroelectric, and energy density properties of (1 − x)BZT–xBCT ceramic capacitors for energy storage applications , 2013, Journal of Materials Science.

[43]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[44]  H. Khemakhem,et al.  Linking large piezoelectric coefficients to highly flexible polarization of lead free BaTiO3-CaTiO3-BaZrO3 ceramics , 2011 .

[45]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[46]  H. Chan,et al.  Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics , 2004 .

[47]  Zhe Zhao,et al.  Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO 3 ceramics , 2004 .

[48]  M. Kosec,et al.  New lead-free relaxors based on the K_0.5Na_0.5NbO_3–SrTiO_3 solid solution , 2004 .

[49]  I. Chen,et al.  Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.

[50]  K. Yoon,et al.  Pyroelectric and dielectric bolometer properties of Sr modified BaTiO3 ceramics , 1999 .

[51]  Zhengkui Xu,et al.  The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics , 1998 .

[52]  R. L. Moreira,et al.  Phenomenological study of diffuse phase transitions , 1992 .

[53]  Gordon R. Love,et al.  Energy Storage in Ceramic Dielectrics , 1990 .

[54]  V. Subramanian,et al.  The role of precursors on piezoelectric and ferroelectric characteristics of 0.5BCT-0.5BZT ceramic , 2018 .

[55]  S. Saravanakumar,et al.  Investigation on charge density, piezoelectric and ferroelectric properties of (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free piezoceramics , 2017, Journal of Materials Science: Materials in Electronics.

[56]  G. Stoica,et al.  Barium strontium titanate-based perovskite materials for microwave applications , 2007 .

[57]  D. Hennings,et al.  Barium titanate based ceramic materials for dielectric use , 1987 .

[58]  V. Schomaker,et al.  Some Revisions of the Covalent Radii and the Additivity Rule for the Lengths of Partially Ionic Single Covalent Bonds , 1941 .