Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions

Petrographic observations and analyses of CM matrices are consistent with their origin as in situ low temperature (<400°K) aqueous alteration products in a parent body regolith. At least four different phyllosilicates were tentatively characterized in Murray and Murchison meteorites, in addition to Fe- and Mg-serpentines in Nogoya. In comparison with bulk meteorite compositions, all phyllosilicates and bulk matrices show enrichment of K relative to Na. Possible loss of Na and possibly some Cl, with addition of H2O and CO2 and water-soluble organic compounds during alteration, indicates a partially open system during alteration. Poorly characterized phases (PCP) are fine-grained (< 1 μm) admixtures of variable proportions of phyllosilicates, carbonaceous matter and opaque oxides of sulfur with high Fe, Ni and Cr contents. Calcite and some magnetite show paragenetic overlap with PCP and phyllosilicates. Carbonaceous matter is largely associated with PCP in altered CM matrices. In the unaltered CV Allende, carbonaceous matter is concentrated on olivine surfaces as a micromounded coating, particularly in the dark haloes that surround some chondrules and aggregates. Precursive alteration material may have been analogous to similarly coated olivine mixed with smaller amounts of metal and sulfides. Synthesis of the water soluble organic compounds found in CM matrices may have occurred prior to or in the same environment as did aqueous alteration of the precursive phases. Preservation or partial preservation of this organic matter may reflect the degree of overlap in episodes of synthesis and alteration. Nogoya is 95% altered and has a bulk carbon content of 5.2 wt%, which is higher than any meteorite. In addition, it has the lowest measured 13C12C ratio of any other carbonaceous chondrite, except for Karoonda.

[1]  E. Anders,et al.  Primordial noble gases in separated meteoritic minerals—I , 1970 .

[2]  S. Richardson,et al.  The composition of carbonaceous chondrite matrix , 1977 .

[3]  K. Kvenvolden,et al.  Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite , 1970, Nature.

[4]  R. Butler,et al.  A Mechanism for Producing Magnetic Remanence in Meteorites and Lunar Samples by Cosmic-Ray Exposure , 1971, Science.

[5]  H. B. Wiik,et al.  The chemical composition of some stony meteorites , 1956 .

[6]  D. W. Strecker,et al.  Near-infrared spectra of the Galilean satellites - Observations and compositional implications , 1978 .

[7]  R. Clayton,et al.  DISTRIBUTION OF THE PRE-SOLAR COMPONENT IN ALLENDE AND OTHER CARBONACEOUS CHONDRITES , 1977 .

[8]  L. Grossman Condensation in the primitive solar nebula , 1972 .

[9]  P. Buseck,et al.  New phyllosilicate types in a carbonaceous chondrite matrix , 1979, Nature.

[10]  E. Bowell,et al.  Asteroid compositional types and their distributions , 1977 .

[11]  R. Moniot,et al.  Planetary noble gas components in Orgueil , 1977 .

[12]  E. Anders,et al.  Noble gases in separated meteoritic minerals - Murchison /C2/, Ornans /C3/, Karoonda /C5/, and Abee /E4/ , 1977 .

[13]  Brian Mason,et al.  The carbonaceous chondrites , 1963 .

[14]  J. Gooding Chemical weathering on Mars - Thermodynamic stabilities of primary minerals /and their alteration products/ from mafic igneous rocks , 1978 .

[15]  J. B. Moody Serpentinization: a review , 1976 .

[16]  L. Grossman,et al.  Early chemical history of the solar system , 1974 .

[17]  John S. Lewis,et al.  Low temperature condensation from the solar nebula , 1972 .

[18]  L. Ahrens,et al.  The composition of the stony meteorites (IV) some analytical data on Orgueil, Nogoya, Ornans and Ngawi , 1969 .

[19]  E. Anders Origin, age, and composition of meteorites , 1964 .

[20]  C. Moore,et al.  Characterization of submicron matrix phyllosilicates from Murray and Nogoya carbonaceous chondrites , 1979 .

[21]  J. R. Ashworth,et al.  Water in non-carbonaceous stony meteorites , 1975, Nature.

[22]  I. Kaplan,et al.  Endogenous Carbon in Carbonaceous Meteorites , 1970, Science.

[23]  L. Fuchs,et al.  Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .

[24]  W. Hartmann Planet formation - Mechanism of early growth , 1978 .

[25]  S. Chang,et al.  Elimination of chromite and novel sulfides as important carriers of noble gases in carbonaceous meteorites , 1978 .

[26]  E. Jarosewich,et al.  MINERALOGY, PETROLOGY AND CHEMISTRY OF THE ISNA (C3) METEORITE , 1975 .

[27]  E. Anders,et al.  Host Phase of a Strange Xenon Component in Allende , 1975, Science.

[28]  J. Kerridge Major element composition of phyllosilicates in the Orgueil carbonaceous meteorite , 1976 .

[29]  H. McSween Are carbonaceous chondrites primitive or processed? A review , 1979 .

[30]  K. Yada,et al.  Growth and microstructure of synthetic chrysotile , 1977 .

[31]  R. Clayton,et al.  Multiple parent bodies of polymict brecciated meteorites , 1978 .

[32]  E. Anders,et al.  Isotopic anomalies of noble gas in meteorites and their origins: Separated minerals from Allende , 1977 .

[33]  Sherwood Chang,et al.  Carbonaceous chondrites—I. Characterization and significance of carbonaceous chondrite (CM) xenoliths in the Jodzie howardite , 1979 .

[34]  G. Boato THE ISOTOPIC COMPOSITION OF HYDROGEN AND CARBON IN THE CARBONACEOUS CHONDRITES , 1954 .

[35]  W. R. Schmus Mineralogy, Petrology, and Classification of Types 3 and 4 Carbonaceous Chondrites , 1969 .

[36]  E. Anders,et al.  Carbon Isotope Fractionation in the Fischer-Tropsch Synthesis and in Meteorites , 1970, Science.

[37]  J. Macdougall,et al.  Mafic silicates in the Orgueil carbonaceous meteorite , 1976 .

[38]  A. J. Bauman,et al.  Allende Meteorite Carbonaceous Phase: Intractable Nature and Scanning Electron Morphology , 1973, Nature.

[39]  H. Krouse,et al.  C13/C12 abundances in components of carbonaceous chondrites and terrestrial samples , 1970 .

[40]  C. Moore,et al.  Amino acids of the Nogoya and Mokoia carbonaceous chondrites , 1976 .

[41]  H. C. Lord Molecular equilibria and condensation in a solar nebula and cool stellar atmospheres , 1965 .

[42]  William K. Hartmann,et al.  Planetesimals to planets: Numerical simulation of collisional evolution , 1978 .

[43]  A. Heuer,et al.  Allende Meteorite: A High-Voltage Electron Petrographic Study , 1971, Science.

[44]  H. Alfvén,et al.  Fractionation and condensation in space , 1971 .

[45]  C. Moore,et al.  The effect of heating on extractable amino acids in the Murchison carbonaceous chondrite , 1974 .

[46]  J. H. Reynolds,et al.  Rare-gas-rich separates from carbonaceous chondrites , 1976 .

[47]  G. Wasserburg,et al.  Aluminum-26 in the early solar system - Fossil or fuel , 1977 .

[48]  L. Wilkening Meteorites in meteorites - Evidence for mixing among the asteroids , 1977 .

[49]  J. Hayes,et al.  Chemical and petrographic correlations among carbonaceous chondrites , 1974 .

[50]  S. Richardson VEIN FORMATION IN THE C1 CARBONACEOUS CHONDRITES , 1978 .

[51]  I. Kaplan,et al.  The isotopic abundance and content of sulfur in meteorites. , 1966 .

[52]  E. Anders,et al.  THE RECORD IN THE METEORITES. III. ON THE DEVELOPMENT OF METEORITES IN ASTEROIDAL BODIES , 1960 .

[53]  B. Meyer,et al.  Geochemical and cosmochemical cycles involving sulfur, sulfide, sulfite and sulfate , 1979 .

[54]  E. Anders,et al.  CHEMICAL FRACTIONATIONS IN METEORITES. II. ABUNDANCE PATTERNS AND THEIR INTERPRETATION. , 1967 .

[55]  A. Delsemme The pristine nature of comets , 1977 .

[56]  J. Wood On the origin of chondrules and chondrites , 1963 .

[57]  Larry A. Lebofsky,et al.  Infrared observations of asteroids from earth and space , 1978 .

[58]  W. Meinschein,et al.  AQUEOUS, LOW TEMPERATURE ENVIRONMENT OF THE ORGUEIL METEORITE PARENT BODY , 1963, Annals of the New York Academy of Sciences.

[59]  R. Clayton,et al.  Nitrogen abundances and isotopic compositions in stony meteorites , 1978 .

[60]  J. Kerridge Correlation between nickel and sulfur abundances in Orgueil phyllosilicates , 1977 .

[61]  K. Bostrom,et al.  Surface conditions of the Orgueil meteorite parent body as indicated by mineral associations , 1965 .

[62]  J F Kerridge,et al.  Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.

[63]  T. Bunch,et al.  Aqueous activity on asteroids - Evidence from carbonaceous meteorites , 1979 .

[64]  R. Clayton,et al.  A classification of meteorites based on oxygen isotopes , 1976 .

[65]  C. Sagan,et al.  Shock Synthesis of Amino Acids in Simulated Primitive Environments , 1970, Science.

[66]  Carleton B. Moore,et al.  Total nitrogen and carbon abundances in carbonaceous chondrites , 1971 .

[67]  B. Siffert Genesis and Synthesis of Clays and Clays Minerals : recent developments and future prospects. , 1979 .

[68]  R. Clayton,et al.  Carbon Isotope Abundance in Meteoritic Carbonates , 1963, Science.

[69]  JOHN S. Lewis A possible origin for sulfates and sulfur in meteorites , 1967 .

[70]  E. A. King,et al.  GRAIN SIZE AND PETROGRAPHY OF C2 AND C3 CARBONACEOUS CHONDRITES , 1978 .

[71]  J. Larimer Chemical fractionations in meteorites—I. Condensation of the elements , 1967 .

[72]  John M. Hayes,et al.  Organic constituents of meteorites - A review. , 1967 .

[73]  E. Anders,et al.  Chemical Evolution of the Carbonaceous Chondrites , 1962 .

[74]  A. Delsemme,et al.  5. Low-Temperature Condensates in Comets , 1977 .

[75]  H. F. Steger,et al.  Oxidation of sulfide minerals, 4. Pyrite, chalcopyrite and pyrrhotite , 1978 .

[76]  P. Ramdohr The Opaque Minerals in Stony Meteorites , 1972 .

[77]  T. Bunch,et al.  THE NAKHLITES PART I: PETROGRAPHY AND MINERAL CHEMISTRY , 1975 .

[78]  JOHN S. Lewis,et al.  Isotopic composition of sulfur and sulfate produced by oxidation of FeS , 1968 .

[79]  E. Jarosewich,et al.  The Allende, Mexico, meteorite shower , 1971 .

[80]  E. Anders,et al.  Solubilities of noble gases in magnetite: implications for planetary gases in meteorites , 1973 .

[81]  R. Clayton,et al.  Oxygen isotope cosmothermometer revisited , 1974 .

[82]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[83]  A. Duffield,et al.  Dicarboxylic acids in the Murchison meteorite , 1974, Nature.

[84]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[85]  I. Kaplan,et al.  Light hydrocarbon gases, C13, and origin of organic matter in carbonaceous chondrites , 1970 .

[86]  E. Anders,et al.  Organic Compounds in Meteorites , 1973, Science.

[87]  E. Anders,et al.  34S/32S ratios for the different forms of sulphur in the Orgueil meteorite and their mode of formation , 1965 .

[88]  R. Clayton,et al.  Oxygen isotope cosmothermometer , 1972 .