Multilevel Thresholding Based on Mean Shift Mode Seeking

A novel multilevel thresholding method based on mean shift procedure is proposed to resolve the problem that the optimal number of thresholds for multilevel thresholding can usually not be predetermined. The mean shift procedure is used to seek the minimal potential mode centroids, after which an iterative threshold selection method is employed to automatically determine every threshold between each pair of adjacent two mode centroids. Finally, multilevel thresholding with the multiple thresholds is utilized to segment the image. Excellent results have been obtained, testing the effectiveness of the algorithm. The proposed method can easily be used in bi-level segmentation, multilevel segmentation, lossy compression and so on.

[1]  Amitava Chatterjee,et al.  A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding , 2008, Expert Syst. Appl..

[2]  Josef Kittler,et al.  Region growing: a new approach , 1998, IEEE Trans. Image Process..

[3]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[4]  Ehud Rivlin,et al.  Mean Shift tracking with multiple reference color histograms , 2010, Comput. Vis. Image Underst..

[5]  Dongxiang Chi,et al.  A Hybrid Clustering Method for Automatic Medical Image Segmentation , 2010 .

[6]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[7]  Patrick Siarry,et al.  A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation , 2008, Comput. Vis. Image Underst..

[8]  José Carlos Príncipe,et al.  Mean shift: An information theoretic perspective , 2009, Pattern Recognit. Lett..

[9]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Jayaram K. Udupa,et al.  Relative Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Hui Zhang,et al.  Image segmentation evaluation: A survey of unsupervised methods , 2008, Comput. Vis. Image Underst..

[13]  Kannan,et al.  ON IMAGE SEGMENTATION TECHNIQUES , 2022 .

[14]  Jun Sun,et al.  A global search strategy of quantum-behaved particle swarm optimization , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[15]  Hui Zhang,et al.  An entropy-based objective evaluation method for image segmentation , 2003, IS&T/SPIE Electronic Imaging.

[16]  Carlo Tomasi,et al.  Mean shift is a bound optimization , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Daming Shi,et al.  Segmentation of green vegetation of crop canopy images based on mean shift and Fisher linear discriminant , 2010, Pattern Recognit. Lett..

[18]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[19]  Desheng Wen,et al.  Hierarchical segmentation based on a multilevel thresholding , 2010, 2010 3rd International Congress on Image and Signal Processing.

[20]  Bhabatosh Chanda,et al.  On edge and line linking with connectionist models , 1994, IEEE Trans. Syst. Man Cybern..

[21]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[22]  Ronen Basri,et al.  Segmentation and boundary detection using multiscale intensity measurements , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[23]  Robert Jenssen,et al.  Mean shift spectral clustering , 2008, Pattern Recognit..

[24]  Mehmet Sezgin,et al.  A new dichotomization technique to multilevel thresholding devoted to inspection applications , 2000, Pattern Recognit. Lett..

[25]  Stanley R. Rotman,et al.  Comments on Picture thresholding using an iterative selection method , 1990, IEEE Trans. Syst. Man Cybern..

[26]  Hao Gao,et al.  Multilevel Thresholding for Image Segmentation Through an Improved Quantum-Behaved Particle Swarm Algorithm , 2010, IEEE Transactions on Instrumentation and Measurement.

[27]  Prasanta K. Panigrahi,et al.  Multilevel thresholding for image segmentation through a fast statistical recursive algorithm , 2006, Pattern Recognit. Lett..

[28]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Miguel Á. Carreira-Perpiñán,et al.  Gaussian Mean-Shift Is an EM Algorithm , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Ming-Huwi Horng,et al.  Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization , 2009, Expert Syst. Appl..

[31]  Brian C. Lovell,et al.  Bezier and splines in image processing and machine vision , 2007 .

[32]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).