Entropies in $\mu$-framework of canonical metrics and K-stability, I -- Archimedean aspect: Perelman's W-entropy and $\mu$-cscK metrics

This is the first in a series of two papers (cf. [Ino4]) studying μ-cscK metrics and μK-stability, from a new perspective evoked from observations in [Ino3] and in this first paper. The first paper is about a characterization of μ-cscK metrics in terms of Perelman’s W -entropy W̌λ. We regard Perelman’s W -entropy as a functional on the tangent bundle TH(X,L) of the space H(X,L) of Kähler metrics in a given Kähler class L. The critical points of W̌λ turn out to be μλ-cscK metrics. When λ ≤ 0, the supremum along the fibres gives a smooth functional on H(X,L), which we call μ-entropy. Then μλ-cscK metrics are also characterized as critical points of this functional, similarly as extremal metric is characterized as the critical points of Calabi functional. We also prove theW -entropy is monotonic along geodesics, following Berman– Berndtsson’s subharmonicity argument. Studying the limit of the W -entropy, we obtain a lower bound of the μ-entropy. This bound is not just analogous, but indeed related to Donaldson’s lower bound on Calabi functional by the extremal limit λ→ −∞.

[1]  Chi Li Geodesic rays and stability in the cscK problem , 2020, 2001.01366.

[2]  G. Tian,et al.  Convergence of the Kähler–Ricci flow on Fano manifolds , 2012 .

[3]  Riemann-Roch for equivariant Chow groups , 1999, math/9905081.

[4]  二木 昭人 Kähler-Einstein metrics and integral invariants , 1987 .

[5]  Xiuxiong Chen,et al.  On the constant scalar curvature K\"ahler metrics, apriori estimates , 2017, 1712.06697.

[6]  Valentino Tosatti,et al.  On the C1,1 Regularity of Geodesics in the Space of Kähler Metrics , 2017 .

[7]  O. Rothaus,et al.  Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators , 1981 .

[8]  G. Tian,et al.  A new holomorphic invariant and uniqueness of Kähler-Ricci solitons , 2002 .

[9]  M. Jonsson,et al.  Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs , 2015, 1504.06568.

[10]  V. Guillemin,et al.  Moment Maps, Cobordisms, and Hamiltonian Group Actions , 2002 .

[11]  G. Tian,et al.  Supremum of Perelman's entropy and Kähler-Ricci flow on a Fano manifold , 2011, 1107.4018.

[12]  Chi Li Kahler-Einstein metrics and K-stability , 2012 .

[13]  Lower bounds on the Calabi functional , 2005, math/0506501.

[14]  Weiyong He Kähler–Ricci soliton and $H$-functional , 2016 .

[15]  Jiyuan Han,et al.  Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties , 2020, Geometry & Topology.

[16]  Valentino Tosatti,et al.  C1,1 regularity for degenerate complex Monge–Ampère equations and geodesic rays , 2017, 1707.03660.

[17]  D. H. Phong,et al.  Regularity of geodesic rays and Monge-Ampère equations , 2009, 0908.0556.

[18]  Tomoyuki Hisamoto Geometric Flow, Multiplier Ideal Sheaves and Optimal Destabilizer for a Fano Manifold , 2019, The Journal of Geometric Analysis.

[19]  E. Inoue Constant $$\mu $$-Scalar Curvature Kähler Metric—Formulation and Foundational Results , 2019, The Journal of Geometric Analysis.

[20]  David J. Buttler,et al.  Encyclopedia of Data Warehousing and Mining Second Edition , 2008 .

[21]  Mingchen Xia,et al.  On sharp lower bounds for Calabi-type functionals and destabilizing properties of gradient flows , 2019, Analysis & PDE.

[22]  R. Dervan Relative K-stability for Kähler manifolds , 2016, Mathematische Annalen.

[23]  Zakarias Sjöström Dyrefelt K-Semistability of cscK Manifolds with Transcendental Cohomology Class , 2017, The Journal of Geometric Analysis.

[24]  B. Berndtsson,et al.  Convexity of the K-energy on the space of Kahler metrics and uniqueness of extremal metrics , 2014, 1405.0401.

[25]  Abdellah Lahdili Convexity of the weighted Mabuchi functional and the uniqueness of weighted extremal metrics , 2020, 2007.01345.

[26]  E. Inoue The moduli space of Fano manifolds with Kähler–Ricci solitons , 2018, Advances in Mathematics.

[27]  Chi Li K-semistability is equivariant volume minimization , 2015, 1512.07205.

[28]  G'abor Sz'ekelyhidi,et al.  The Kähler–Ricci flow and optimal degenerations , 2016, Journal of Differential Geometry.

[29]  M. Jonsson,et al.  Uniform K-stability and asymptotics of energy functionals in Kähler geometry , 2016, Journal of the European Mathematical Society.