Entropies in $\mu$-framework of canonical metrics and K-stability, I -- Archimedean aspect: Perelman's W-entropy and $\mu$-cscK metrics
暂无分享,去创建一个
[1] Chi Li. Geodesic rays and stability in the cscK problem , 2020, 2001.01366.
[2] G. Tian,et al. Convergence of the Kähler–Ricci flow on Fano manifolds , 2012 .
[3] Riemann-Roch for equivariant Chow groups , 1999, math/9905081.
[4] 二木 昭人. Kähler-Einstein metrics and integral invariants , 1987 .
[5] Xiuxiong Chen,et al. On the constant scalar curvature K\"ahler metrics, apriori estimates , 2017, 1712.06697.
[6] Valentino Tosatti,et al. On the C1,1 Regularity of Geodesics in the Space of Kähler Metrics , 2017 .
[7] O. Rothaus,et al. Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators , 1981 .
[8] G. Tian,et al. A new holomorphic invariant and uniqueness of Kähler-Ricci solitons , 2002 .
[9] M. Jonsson,et al. Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs , 2015, 1504.06568.
[10] V. Guillemin,et al. Moment Maps, Cobordisms, and Hamiltonian Group Actions , 2002 .
[11] G. Tian,et al. Supremum of Perelman's entropy and Kähler-Ricci flow on a Fano manifold , 2011, 1107.4018.
[12] Chi Li. Kahler-Einstein metrics and K-stability , 2012 .
[13] Lower bounds on the Calabi functional , 2005, math/0506501.
[14] Weiyong He. Kähler–Ricci soliton and $H$-functional , 2016 .
[15] Jiyuan Han,et al. Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties , 2020, Geometry & Topology.
[16] Valentino Tosatti,et al. C1,1 regularity for degenerate complex Monge–Ampère equations and geodesic rays , 2017, 1707.03660.
[17] D. H. Phong,et al. Regularity of geodesic rays and Monge-Ampère equations , 2009, 0908.0556.
[18] Tomoyuki Hisamoto. Geometric Flow, Multiplier Ideal Sheaves and Optimal Destabilizer for a Fano Manifold , 2019, The Journal of Geometric Analysis.
[19] E. Inoue. Constant $$\mu $$-Scalar Curvature Kähler Metric—Formulation and Foundational Results , 2019, The Journal of Geometric Analysis.
[20] David J. Buttler,et al. Encyclopedia of Data Warehousing and Mining Second Edition , 2008 .
[21] Mingchen Xia,et al. On sharp lower bounds for Calabi-type functionals and destabilizing properties of gradient flows , 2019, Analysis & PDE.
[22] R. Dervan. Relative K-stability for Kähler manifolds , 2016, Mathematische Annalen.
[23] Zakarias Sjöström Dyrefelt. K-Semistability of cscK Manifolds with Transcendental Cohomology Class , 2017, The Journal of Geometric Analysis.
[24] B. Berndtsson,et al. Convexity of the K-energy on the space of Kahler metrics and uniqueness of extremal metrics , 2014, 1405.0401.
[25] Abdellah Lahdili. Convexity of the weighted Mabuchi functional and the uniqueness of weighted extremal metrics , 2020, 2007.01345.
[26] E. Inoue. The moduli space of Fano manifolds with Kähler–Ricci solitons , 2018, Advances in Mathematics.
[27] Chi Li. K-semistability is equivariant volume minimization , 2015, 1512.07205.
[28] G'abor Sz'ekelyhidi,et al. The Kähler–Ricci flow and optimal degenerations , 2016, Journal of Differential Geometry.
[29] M. Jonsson,et al. Uniform K-stability and asymptotics of energy functionals in Kähler geometry , 2016, Journal of the European Mathematical Society.