Low-density graph codes that are optimal for source/channel coding and binning

We describe and analyze the joint source/channel coding properties of a class of sparse graphical codes based on compounding a low-density generator matrix (LDGM) code with a low-density parity check (LDPC) code. Our first pair of theorems establish that there exist codes from this ensemble, with all degrees remaining bounded independently of block length, that are simultaneously optimal as both source and channel codes when encoding and decoding are performed optimally. More precisely, in the context of lossy compression, we prove that finite degree constructions can achieve any pair $(R, D)$ on the rate-distortion curve of the binary symmetric source. In the context of channel coding, we prove that finite degree codes can achieve any pair $(C, p)$ on the capacity-noise curve of the binary symmetric channel. Next, we show that our compound construction has a nested structure that can be exploited to achieve the Wyner-Ziv bound for source coding with side information (SCSI), as well as the Gelfand-Pinsker bound for channel coding with side information (CCSI). Although the current results are based on optimal encoding and decoding, the proposed graphical codes have sparse structure and high girth that renders them well-suited to message-passing and other efficient decoding procedures.

[1]  T. Murayama Thouless-Anderson-Palmer approach for lossy compression. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Martin J. Wainwright,et al.  Lossy source encoding via message-passing and decimation over generalized codewords of LDGM codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[3]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[5]  Simon Litsyn,et al.  On ensembles of low-density parity-check codes: Asymptotic distance distributions , 2002, IEEE Trans. Inf. Theory.

[6]  R. Monasson,et al.  Rigorous decimation-based construction of ground pure states for spin-glass models on random lattices. , 2002, Physical review letters.

[7]  Michael W. Marcellin,et al.  Trellis coded quantization of memoryless and Gauss-Markov sources , 1990, IEEE Trans. Commun..

[8]  Kannan Ramchandran,et al.  Turbo and trellis-based constructions for source coding with side information , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[9]  Stephan ten Brink,et al.  A close-to-capacity dirty paper coding scheme , 2004, IEEE Transactions on Information Theory.

[10]  Zixiang Xiong,et al.  Nested convolutional/turbo codes for the binary Wyner-Ziv problem , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[11]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[12]  Rüdiger L. Urbanke,et al.  Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[13]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[14]  Stephan ten Brink,et al.  A close-to-capacity dirty paper coding scheme , 2004, ISIT.

[15]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[16]  H.-A. Loeliger,et al.  An introduction to factor graphs , 2004, IEEE Signal Process. Mag..

[17]  Emin Martinian,et al.  Iterative Quantization Using Codes On Graphs , 2004, ArXiv.

[18]  Zixiang Xiong,et al.  Near-capacity dirty-paper code designs based on TCQ and IRA codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[19]  Gregory W. Wornell,et al.  The duality between information embedding and source coding with side information and some applications , 2003, IEEE Trans. Inf. Theory.

[20]  Martin J. Wainwright,et al.  Low density codes achieve the rate-distortion bound , 2006, Data Compression Conference (DCC'06).

[21]  Kannan Ramchandran,et al.  Distributed source coding using syndromes (DISCUS): design and construction , 2003, IEEE Trans. Inf. Theory.

[22]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[23]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[24]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[25]  K. Ramchandran,et al.  Turbo coded trellis-based constructions for data embedding: channel coding with side information , 2001, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256).

[26]  Martin J. Wainwright,et al.  Analysis of LDGM and compound codes for lossy compression and binning , 2006, ArXiv.

[27]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[28]  M. Mézard,et al.  Two Solutions to Diluted p-Spin Models and XORSAT Problems , 2003 .

[29]  Ying Zhao,et al.  Compression of binary memoryless sources using punctured turbo codes , 2002, IEEE Communications Letters.

[30]  Zixiang Xiong,et al.  On Multiterminal Source Code Design , 2005, IEEE Transactions on Information Theory.

[31]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[32]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[33]  Nadia Creignou,et al.  Approximating The Satisfiability Threshold For Random K-Xor-Formulas , 2003, Comb. Probab. Comput..

[34]  Riccardo Zecchina,et al.  Alternative solutions to diluted p-spin models and XORSAT problems , 2002, ArXiv.

[35]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[36]  Olivier Dubois,et al.  The 3-XORSAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[37]  Marc Mézard,et al.  The theoretical capacity of the Parity Source Coder , 2005, ArXiv.

[38]  Hirosuke Yamamoto,et al.  A coding theorem for lossy data compression by LDPC codes , 2003, IEEE Trans. Inf. Theory.

[39]  Andrew J. Viterbi,et al.  Trellis Encoding of memoryless discrete-time sources with a fidelity criterion , 1974, IEEE Trans. Inf. Theory.

[40]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[41]  J. Wolfowitz The rate distortion function for source coding with side information at the decoder , 1979 .

[42]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[43]  Martin J. Wainwright,et al.  Low-density constructions can achieve the Wyner-Ziv and Gelfand-Pinsker bounds , 2006, 2006 IEEE International Symposium on Information Theory.

[44]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[45]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[46]  R. Zecchina,et al.  Message-Passing Algorithms for Non-Linear Nodes and Data Compression , 2005, Complexus.

[47]  Omid Etesami,et al.  Raptor codes on binary memoryless symmetric channels , 2006, IEEE Transactions on Information Theory.

[48]  Masato Okada,et al.  One step RSB scheme for the rate distortion function , 2002, cond-mat/0207637.