MuFeSaC: Learning When to Use Which Feature Detector
暂无分享,去创建一个
Mongi A. Abidi | Andreas F. Koschan | David L. Page | Sreenivas R. Sukumar | Hamparsum Bozdogan | H. Bozdogan | M. Abidi | A. Koschan | S. Sukumar | D. Page
[1] Andrew Zisserman,et al. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..
[2] Robert C. Bolles,et al. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.
[3] van M.H. Emden,et al. An analysis of complexity , 1971 .
[4] James R. Bergen,et al. Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..
[5] H. Bozdogan,et al. Akaike's Information Criterion and Recent Developments in Information Complexity. , 2000, Journal of mathematical psychology.
[6] Peter Kovesi,et al. Image Features from Phase Congruency , 1995 .
[7] Cordelia Schmid,et al. Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.
[8] N. H. C. Yung,et al. Curvature scale space corner detector with adaptive threshold and dynamic region of support , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..
[9] Cordelia Schmid,et al. A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..
[10] H. Bozdogan,et al. MULTI-SAMPLE CLUSTER ANALYSIS AS AN ALTERNATIVE TO MULTIPLE COMPARISON PROCEDURES , 1986 .
[11] Tom Drummond,et al. Machine Learning for High-Speed Corner Detection , 2006, ECCV.
[12] Cordelia Schmid,et al. A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] B. S. Manjunath,et al. A Mathematical Comparison of Point Detectors , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.