Estimation of the Composite Fast Fading and Shadowing Distribution Using the Log-Moments in Wireless Communications

In this work, we propose a framework to obtain estimators from a variety of distributions used in composite fast fading and shadowing modeling with applications in wireless communications: the Suzuki (Rayleigh-lognormal), Nakagami-lognormal, K (Rayleigh-gamma), generalized-K (Nakagami-gamma) and α-μ (generalized gamma) distributions. These estimators are derived from the method of moments of these distributions in logarithmic units, usually known as log-moments. The goodness-of-fit of these estimators to experimental distributions has been checked from a measurement campaign carried out in an urban environment. Moreover a new method to separate fast fading and shadowing based on the Rathgeber procedure is proposed. The results conclude that the best-fitting distribution to the measurements is the Nakagami-lognormal. Also, the α-μ distribution provides an acceptable matching with the advantage of its simplicity.

[1]  R. A. Silverman,et al.  Wave Propagation in a Turbulent Medium , 1961 .

[2]  Alain Dussauchoy,et al.  Parameter estimation of the generalized gamma distribution , 2008, Math. Comput. Simul..

[3]  Rodney G. Vaughan,et al.  Improved fading distribution for mobile radio , 1998 .

[4]  Lorenzo Rubio,et al.  Evaluation of Nakagami fading behaviour based on measurements in urban scenarios , 2007 .

[5]  Ali Abdi,et al.  K distribution: an appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels , 1998 .

[6]  W. R. Braun,et al.  A physical mobile radio channel model , 1991 .

[7]  Norman C. Beaulieu,et al.  Micro- and macrodiversity NCFSK (DPSK) on shadowed Nakagami-fading channels , 1994, IEEE Trans. Commun..

[8]  Michel Daoud Yacoub,et al.  The α-μ distribution: a general fading distribution , 2002, PIMRC.

[9]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[10]  Nakagami Law,et al.  GAMMA MIXTURE MODELED WITH "SECOND KIND STATISTICS" : APPLICATION TO SAR IMAGE PROCESSING , 2002 .

[11]  Hassan M. El-Sallabi,et al.  An Additive Model as a Physical Basis for Shadow Fading , 2007, IEEE Transactions on Vehicular Technology.

[12]  Hirofumi Suzwi,et al.  A Statistical Model for Urban Radio Propagation , 1977 .

[13]  H. Suzuki,et al.  A Statistical Model for Urban Radio Propogation , 1977, IEEE Trans. Commun..

[14]  Gláucio L. Siqueira,et al.  Local and Global Signal Variability Statistics in a Mobile Urban Environment , 2000, Wirel. Pers. Commun..

[15]  Simon R. Saunders,et al.  Antennas and Propagation for Wireless Communication Systems , 1999 .

[16]  George K. Karagiannidis,et al.  The N* Nakagami fading channel model , 2005, 2005 2nd International Symposium on Wireless Communication Systems.

[17]  Tjeng Thiang Tjhung,et al.  Bit error rate performance of /spl pi//4 DQPSK for Nakagami-lognormal channels , 1998 .

[18]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[19]  R. W. Lorenz Theoretical distribution functions of multipath propagation and their parameters for mobile radio communication in quasi-smooth terrain , 1979 .

[20]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[21]  R. Clarke A statistical theory of mobile-radio reception , 1968 .

[22]  Tjeng Thiang Tjhung,et al.  Fade statistics in Nakagami-lognormal channels , 1999, IEEE Trans. Commun..

[23]  P. Mohana Shankar,et al.  Error Rates in Generalized Shadowed Fading Channels , 2004, Wirel. Pers. Commun..

[24]  Michel Daoud Yacoub General Fading Distributions , 2002 .

[25]  Samuel Kotz,et al.  Compound statistical models for shadowed fading channels , 2008 .

[26]  T. Aulin,et al.  Characteristics of a digital mobile radio channel , 1981, IEEE Transactions on Vehicular Technology.

[27]  P.M. Shankar,et al.  A compound scattering pdf for the ultrasonic echo envelope and its relationship to K and Nakagami distributions , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  A. Murase,et al.  Handover criterion for macro and microcellular systems , 1991, [1991 Proceedings] 41st IEEE Vehicular Technology Conference.

[29]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[30]  Ali Abdi,et al.  Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions , 2000, IEEE Communications Letters.

[31]  Jean-Marie Nicolas,et al.  Accuracy of fisher distributions and log-moment estimation to describe amplitude distributions of high resolution SAR images over urban areas , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[32]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[33]  Saralees Nadarajah,et al.  A Generalized Suzuki Distribution , 2010, Wireless Personal Communications.

[34]  C. Tellambura Bit error rate performance of π / 4 DQPSK for Nakagami-lognormal channels , 1998 .

[35]  Claude Oestges,et al.  Non-Stationary Narrowband MIMO Inter-Vehicle Channel Characterization in the 5-GHz Band , 2010, IEEE Transactions on Vehicular Technology.

[36]  M.D. Yacoub,et al.  The $\alpha$-$\mu$ Distribution: A Physical Fading Model for the Stacy Distribution , 2007, IEEE Transactions on Vehicular Technology.

[37]  P. Shankar Outage probabilities in shadowed fading channels using a compound statistical model , 2005 .

[38]  G. Matz,et al.  On non-WSSUS wireless fading channels , 2005, IEEE Transactions on Wireless Communications.

[39]  Nicholas J. Redding,et al.  Estimating the Parameters of the K Distribution in the Intensity Domain , 1999 .

[40]  Jørgen Bach Andersen Stastistical distributions in mobile communications using multiple scattering , 2002 .

[41]  George K. Karagiannidis,et al.  On the performance analysis of digital communications over generalized-K fading channels , 2006, IEEE Communications Letters.

[42]  Claude Oestges,et al.  Physically motivated fast-fading model for indoor peer-to-peer channels , 2009 .

[43]  Fredrik Tufvesson,et al.  Multi-dimensional K-factor analysis for V2V radio channels in open sub-urban street crossings , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[44]  F.I. Meno,et al.  Mobile fading—Rayleigh and lognormal superimposed , 1977, IEEE Transactions on Vehicular Technology.

[45]  P. Mohana Shankar,et al.  Statistical Models for Fading and Shadowed Fading Channels in Wireless Systems: A Pedagogical Perspective , 2011, Wirel. Pers. Commun..

[46]  Bouchra Senadji Mobile-radio propagation channel modeling: signal processing challenges , 1993, Optics & Photonics.

[47]  G. Lampropoulos,et al.  High resolution radar clutter statistics , 1999 .

[48]  Matthias Pätzold,et al.  The Influence of the Severity of Fading and Shadowing on the Statistical Properties of the Capacity of Nakagami-Lognormal Channels , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[49]  Lorenzo Rubio,et al.  On Simple Estimators of the α-μ Fading Distribution , 2011, IEEE Transactions on Communications.

[50]  George L. Turin,et al.  A statistical model of urban multipath propagation , 1972 .

[51]  U. Charash Reception Through Nakagami Fading Multipath Channels with Random Delays , 1979, IEEE Trans. Commun..

[52]  E. W. Stacy,et al.  Parameter Estimation for a Generalized Gamma Distribution , 1965 .