Scintillation and photoluminescence property of SiO_2 cladding YAP:Ce optical fiber via modified rod-in-tube method

A SiO2 glass-cladding YAP:Ce crystal fiber (SYCF) was fabricated using the modified rod-in-tube method. The inter-diffusion of Ce3+ between the YAP:Ce core and SiO2 glass cladding is investigated by an energy dispersive spectrometer and a refractive index profiler. Photoluminescence (PL) properties of both SYCF and fiber fabrication materials are compared. A wide PL band from 320 to 600 nm in SYCF is observed showing a different response when compared to YAP:Ce crystal material. The radiative life time of SYCF at 370 and 486 are approximately 29 and 61 ns, respectively. We confirm the PL center belongs to the Ce3+ in two types of YAP:Ce and SiO2 host using decay kinetics. In addition, the competition mechanism of Ce3+ ion transition from YAP to SiO2 is explained using a microstructural model. The scintillation and luminescence properties of SYCF indicate promising potential applications in remote radiative environment monitoring and in radiotherapy.

[1]  H. Lischka,et al.  Theoretical study of vibrational and optical spectra of methylene-bridged oligofluorenes. , 2005, The journal of physical chemistry. A.

[2]  J.F.C.A. Veloso,et al.  Development of a scintillating optical fiber dosimeter with silicon photomultipliers , 2014 .

[3]  K. Nagasawa,et al.  A study of the PL emission mechanisms in silica glass by considering the growth of the PL , 2001 .

[4]  Alan L. Huston,et al.  Fiber-optic-coupled, laser heated thermoluminescence dosimeter for remote radiation sensing , 1996 .

[5]  Tingyun Wang,et al.  Optical properties of PbS-doped silica optical fiber materials based on atomic layer deposition , 2014 .

[6]  F. Pang,et al.  Photoluminescence Characteristics of Bi(m+)-Doped Silica Optical Fiber: Structural Model and Theoretical Analysis , 2013 .

[7]  Grant V. M. Williams,et al.  Fiber-optic-coupled RbMgF 3 :Eu 2+ for remote radiation dosimetry , 2011 .

[8]  V. Petříček,et al.  Assignment of4f−5dabsorption bands in Ce-dopedRAlO3(R=La, Gd, Y, Lu) perovskites , 2009 .

[9]  A. Del Guerra,et al.  Optical and scintillation properties of Ce3+ doped YAlO3 crystal fibers grown by μ-pulling down technique , 2007 .

[10]  Roberto Pani,et al.  Scintillation properties of YAP:Ce , 1995 .

[11]  Emanuele Pignoli,et al.  Characterization of a Ce3+ doped SiO2 optical dosimeter for dose measurements in HDR brachytherapy , 2013 .

[12]  M. Casu,et al.  Stability of luminescent trivalent cerium in silica host glasses modified by boron and phosphorus. , 2005, Journal of the American Chemical Society.

[13]  M. Paul,et al.  Ce-doped and Ce/Au-codoped alumino-phospho-silicate fibers: Spectral attenuation trends at high-energy electron irradiation and posterior low-power optical bleaching , 2014 .

[14]  Hai-Zhi Song,et al.  Strong ultraviolet photoluminescence from silicon oxide films prepared by magnetron sputtering , 1998 .

[15]  P. Dorenbos 5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides , 2002 .

[16]  P. Dorenbos,et al.  Scintillation properties of Lu2Si2O7:Ce3+, a fast and efficient scintillator crystal , 2003 .

[17]  Laura Mihai,et al.  Characterization of Scintillating X-ray Optical Fiber Sensors , 2014, Sensors.

[18]  Martin Nikl,et al.  Hole and electron traps in the YAlO 3 single crystal scintillator , 2009 .

[19]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[20]  G. Blasse,et al.  Investigation of Some Ce3+‐Activated Phosphors , 1967 .

[21]  W. Krupke,et al.  Measurement of excited‐state‐absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare‐earth lasers , 1978 .

[22]  Wenjie Liu,et al.  Preform fabrication and fiber drawing of 300 nm broadband Cr-doped fibers. , 2007, Optics express.

[23]  A. Anedda,et al.  Low temperature time resolved photoluminescence of the 3.1 and 4.2 eV emission bands in Ge-doped silica , 1997 .

[24]  Wenming Tang,et al.  Multi-peak behavior of photoluminescence of silica particles heat-treated in hydrogen at elevated temperature , 2007 .

[25]  David N. Payne,et al.  Local structures of rare-earth ions in glasses: the ‘crystal-chemistry’ approach , 1993 .

[26]  Wook Jae Yoo,et al.  Feasibility of fiber-optic radiation sensor using Cerenkov effect for detecting thermal neutrons. , 2013, Optics express.

[27]  M. Nikl,et al.  Irregular Ce3+and defect-related luminescence in YAlO3 single crystal , 2007 .

[28]  Wook Jae Yoo,et al.  Development of a scintillating fiber-optic dosimeter for measuring the entrance surface dose in diagnostic radiology , 2013 .

[29]  M. Nikl,et al.  Luminescence of La3+ and Sc3+ impurity centers in YAlO3 single-crystalline films , 2008 .

[30]  Shunsuke Kurosawa,et al.  Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators , 2014 .

[31]  G. Dieke,et al.  Ion-Pair Resonance Mechanism of Energy Transfer in Rare Earth Crystal Fluorescence , 1961 .

[32]  Ningfang Song,et al.  Experimental investigation of the factors influencing temperature dependence of radiation-induced attenuation in optical fiber , 2014 .

[33]  A. S. Camargo,et al.  Luminescence characteristics of YAP:Ce scintillator powders and composites , 2010 .

[34]  Subhabrata Bera,et al.  Growth of single-crystal YAG fiber optics. , 2016, Optics express.

[35]  Norberto Chiodini,et al.  Ce3+-doped fibers for remote radiation dosimetry , 2004 .

[36]  Elfed Lewis,et al.  Radiation Dosimeter Using an Extrinsic Fiber Optic Sensor , 2014, IEEE Sensors Journal.

[37]  Wood-Hi Cheng,et al.  Fabrication and Characteristics of Ce-Doped Fiber for High-Resolution OCT Source , 2014, IEEE Photonics Technology Letters.

[38]  Qiang Guo,et al.  SiO2 Glass-Cladding YAP:Ce Scintillating Fiber for Remote Radiation Dosimeter , 2017, IEEE Photonics Technology Letters.

[39]  S. Krafft,et al.  Performance characteristics of a gated fiber-optic-coupled dosimeter in high-energy pulsed photon radiation dosimetry. , 2010, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[40]  K. Blažek,et al.  Luminescence and defects creation in Ce3+‐doped YAlO3 and Lu0.3Y0.7AlO3 crystals , 2005 .

[41]  Alfredo Pasquarello,et al.  Identification of Raman defect lines as signatures of ring structures in vitreous silica , 1998 .

[42]  P. Paillet,et al.  X-ray irradiation effects on fluorine-doped germanosilicate optical fibers , 2014 .

[43]  Tingyun Wang,et al.  Influences of irradiation on network microstructure of low water peak optical fiber material , 2010 .

[44]  Norberto Chiodini,et al.  High-efficiency SiO2:Ce3+ glass scintillators , 2002 .

[45]  F. Pang,et al.  Fluorescence properties and energy level structure of Ce-doped silica fiber materials , 2017 .