Metallo-, Thermo-, and Photoresponsive Shape Memory and Actuating Liquid Crystalline Elastomers

A liquid crystalline elastomer incorporating a mesogenic derivative of the 2,6-bisbenzimidazolylpyridine (Bip) ligand has been prepared, and its shape memory and actuating properties have been studied. The reversible liquid crystal to isotropic transition is utilized as the switching mechanism for these stimuli-responsive materials. As such, this material exhibits soft shape memory; that is, flexibility is retained in both the permanent and temporary shapes. In addition to the thermal shape memory/actuating properties exhibited by most liquid crystalline elastomers, the incorporation of the metal ion-binding Bip mesogen into the backbone of the network imparts both (i) photoresponsive properties, via a photothermal conversion process, and (ii) metal-ion-triggered shape recovery/actuation to the material. For the latter process, it is proposed that the metal-binding event induces liquid crystalline to isotropic transition in this material at room temperature, resulting in actuation/recovery of the permanen...

[1]  P. Keller,et al.  Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. , 2009, Journal of the American Chemical Society.

[2]  F. Kremer,et al.  Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers , 2001, Nature.

[3]  Shaobing Zhou,et al.  Highly pH-sensitive polyurethane exhibiting shape memory and drug release , 2014 .

[4]  P. Keller,et al.  Photoluminescent nematic liquid crystalline elastomer with a thermomechanical emission variation function. , 2014, Macromolecular rapid communications.

[5]  P. Mather,et al.  Soft bacterial polyester‐based shape memory nanocomposites featuring reconfigurable nanostructure , 2012 .

[6]  S. Rowan,et al.  Improved synthesis of functionalized mesogenic 2,6-bisbenzimidazolylpyridine ligands , 2008 .

[7]  Justin R. Kumpfer,et al.  Directed Self-Assembly of Metallosupramolecular Polymers at the Polymer-Polymer Interface. , 2012, ACS macro letters.

[8]  S. Rowan,et al.  Structure–Property Relationships in Metallosupramolecular Poly(p-xylylene)s , 2012 .

[9]  R. Vaia,et al.  Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers , 2009 .

[10]  M. Shelley,et al.  Fast liquid-crystal elastomer swims into the dark , 2004, Nature materials.

[11]  A. Schenning,et al.  Two-dimensional pH-responsive printable smectic hydrogels. , 2012, Chemical communications.

[12]  P. Keller,et al.  Light-responsive wires from side-on liquid crystalline azo polymers , 2009 .

[13]  S. Rowan,et al.  Control of gel morphology and properties of a class of metallo- supramolecular polymers by good/poor solvent environments , 2009 .

[14]  Justin R. Kumpfer,et al.  Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. , 2011, Journal of the American Chemical Society.

[15]  K. Urayama,et al.  Electrical Actuation of Cholesteric Liquid Crystal Gels. , 2014, ACS macro letters.

[16]  S. Zhang,et al.  pH-induced shape-memory polymers. , 2012, Macromolecular rapid communications.

[17]  P. Krumholz Studies on the Coordinate Bond. VI. The Nature of the Chromophoric Group in Iron(II) Complexes of Tridentate Imine Ligands , 1965 .

[18]  S. Rowan,et al.  Metal/Ligand-Induced Formation of Metallo-Supramolecular Polymers , 2005 .

[19]  Tomiki Ikeda,et al.  Anisotropic Bending and Unbending Behavior of Azobenzene Liquid‐Crystalline Gels by Light Exposure , 2003 .

[20]  T. Xie Recent advances in polymer shape memory , 2011 .

[21]  Yen Wei,et al.  Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. , 2014, Nature materials.

[22]  P. Mukherjee Isotropic to smectic-A phase transition: A review , 2014 .

[23]  S. Rowan,et al.  Synthesis and Properties of Metallo-Supramolecular Poly(p-xylylene)s , 2006 .

[24]  Marc Behl,et al.  Shape-memory polymers with multiple transitions: complex actively moving polymers , 2013 .

[25]  Heino Finkelmann,et al.  Photocrosslinkable Liquid Crystal Main‐Chain Polymers: Thin Films and Electrospinning , 2007 .

[26]  Cheng Huang,et al.  Nematic Anisotropic Liquid‐Crystal Gels—Self‐Assembled Nanocomposites with High Electromechanical Response , 2003 .

[27]  Justin R. Kumpfer,et al.  Optically healable supramolecular polymers , 2011, Nature.

[28]  Junhua Zhang,et al.  Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol) , 2010 .

[29]  Justin R. Kumpfer,et al.  In situ formation of metal nanoparticle composites via "soft" plasma electrochemical reduction of metallosupramolecular polymer films , 2012 .

[30]  K. Harris,et al.  Self-assembled polymer films for controlled agent-driven motion. , 2005, Nano letters.

[31]  Yanlei Yu,et al.  How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? , 2006, Angewandte Chemie.

[32]  A. Schenning,et al.  Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. , 2014, Journal of the American Chemical Society.

[33]  S. Rowan,et al.  Metallo-Responsive Liquid Crystalline Monomers and Polymers , 2011 .

[34]  D. Mantovani,et al.  Shape Memory Materials for Biomedical Applications , 2002 .

[35]  S. Rowan,et al.  Synthesis and Properties of Metallo-Supramolecular Poly(p-phenylene ethynylene)s , 2006 .

[36]  Christoph Weder,et al.  Fluorescent organometallic sensors for the detection of chemical-warfare-agent mimics. , 2006, Angewandte Chemie.

[37]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[38]  Hongrui Jiang,et al.  Actuators based on liquid crystalline elastomer materials. , 2013, Nanoscale.

[39]  C. Ohm,et al.  Microfluidic synthesis of highly shape-anisotropic particles from liquid crystalline elastomers with defined director field configurations. , 2011, Journal of the American Chemical Society.

[40]  R. Zentel,et al.  Photoswitchable smectic liquid-crystalline elastomers , 2005 .

[41]  Stuart J. Rowan,et al.  Influence of Metal Ion and Polymer Core on the Melt Rheology of Metallosupramolecular Films , 2012 .

[42]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[43]  Yong Zhu,et al.  Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications , 2012 .

[44]  Banahalli R. Ratna,et al.  Liquid Crystal Elastomers with Mechanical Properties of a Muscle , 2001 .

[45]  Seok Kim,et al.  Microstructured shape memory polymer surfaces with reversible dry adhesion. , 2013, ACS applied materials & interfaces.

[46]  C. Ohm,et al.  A Continuous Flow Synthesis of Micrometer‐Sized Actuators from Liquid Crystalline Elastomers , 2009, Advanced materials.

[47]  Wei Min Huang,et al.  Thermo/chemo-responsive shape memory effect in polymers: a sketch of working mechanisms, fundamentals and optimization , 2012, Journal of Polymer Research.

[48]  S. Rowan,et al.  Decoupling Optical Properties in Metallo-Supramolecular Poly(p-phenylene ethynylene)s , 2008 .

[49]  C. Ohm,et al.  Liquid Crystalline Elastomers as Actuators and Sensors , 2010, Advanced materials.

[50]  S. Rowan,et al.  Multistimuli, multiresponsive metallo-supramolecular polymers. , 2003, Journal of the American Chemical Society.

[51]  G. Bernardinelli,et al.  Introducing Bulky Functional Lanthanide Cores into Thermotropic Metallomesogens: A Bottom‐Up Approach , 2006 .

[52]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[53]  K. A. Burke,et al.  Soft shape memory in main-chain liquid crystalline elastomers , 2010 .

[54]  Justin R. Kumpfer,et al.  Vapochromic and mechanochromic films from square-planar platinum complexes in polymethacrylates , 2012 .

[55]  S. Rowan,et al.  Effect of monomer structure on the gelation of a class of metallo-supramolecular polymers , 2009 .

[56]  S. Rowan,et al.  Redox-induced polymerisation/depolymerisation of metallo-supramolecular polymers , 2012 .

[57]  Tao Xu,et al.  Behavior of Thermoset Shape Memory Polymer-Based Syntactic Foam Sealant Trained by Hybrid Two-Stage Programming , 2013 .

[58]  Benoit Ladoux,et al.  Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography. , 2006, Journal of the American Chemical Society.

[59]  S. Rowan,et al.  Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. , 2006, Journal of the American Chemical Society.