Modified Gauss–Laguerre Exponential Fitting Based Formulae

Modified Gauss–Laguerre exponentially fitted quadrature rules are introduced for the computation of integrals of oscillatory functions over the whole positive semiaxis. Their weights and nodes depend on the frequency of oscillation in the integrand, thus increasing the accuracy of classical Gauss–Laguerre formulae. The asymptotic order is discussed, and an algorithm for determining weights and nodes for a general number N of nodes is provided, resulting an improvement of the existing quadrature formulae. Numerical illustrations are also presented.

[1]  Liviu Gr Ixaru,et al.  Numerical methods for differential equations and applications , 1984 .

[2]  Beatrice Paternoster,et al.  Ef-Gaussian direct quadrature methods for Volterra integral equations with periodic solution , 2015, Math. Comput. Simul..

[3]  Beatrice Paternoster,et al.  Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday , 2012, Comput. Phys. Commun..

[4]  R. D'Ambrosio,et al.  Parameter estimation in exponentially fitted hybrid methods for second order differential problems , 2011, Journal of Mathematical Chemistry.

[5]  Marnix Van Daele,et al.  Interpolatory Quadrature Rules for Oscillatory Integrals , 2012, Journal of Scientific Computing.

[6]  H. De Meyer,et al.  Deferred correction with mono-implicit Runge-Kutta methods for first-order IVPs , 1999 .

[7]  Hassan Majidian Numerical approximation of highly oscillatory integrals on semi-finite intervals by steepest descent method , 2012, Numerical Algorithms.

[8]  Beatrice Paternoster,et al.  Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations , 2011, Math. Comput. Simul..

[9]  Carlos R Reis,et al.  Erratum to: the ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma , 2014, SpringerPlus.

[10]  Raffaele D'Ambrosio,et al.  Exponentially fitted two-step hybrid methods for y″=f(x, y) , 2011, J. Comput. Appl. Math..

[11]  Seyyed M. Hasheminejad,et al.  LIQUID SLOSHING IN HALF-FULL HORIZONTAL ELLIPTICAL TANKS , 2009 .

[12]  Liviu Gr. Ixaru Runge-Kutta method with equation dependent coefficients , 2012, Comput. Phys. Commun..

[13]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[14]  L.Gr. Ixaru,et al.  Operations on oscillatory functions , 1997 .

[15]  Beatrice Paternoster,et al.  Two-step hybrid collocation methods for y"=f(x, y) , 2009, Appl. Math. Lett..

[16]  K. Kim Quadrature rules for the integration of the product of two oscillatory functions with different frequencies , 2003 .

[17]  K. Kim Two-frequency-dependent Gauss quadrature rules , 2005 .

[18]  Beatrice Paternoster,et al.  Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection , 2012, Appl. Math. Comput..

[19]  Beatrice Paternoster,et al.  Exponential fitting Direct Quadrature methods for Volterra integral equations , 2010, Numerical Algorithms.

[20]  Daan Huybrechs,et al.  Complex Gaussian quadrature for oscillatory integral transforms , 2013 .

[21]  Daan Huybrechs,et al.  A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems , 2007, SIAM J. Sci. Comput..

[22]  Ronald Cools,et al.  Quadrature Rules Using First Derivatives for Oscillatory Integrands , 2001 .

[23]  Daan Huybrechs,et al.  A Gaussian quadrature rule for oscillatory integrals on a bounded interval , 2012, 1212.1293.

[24]  N. G. Zamani,et al.  Adaptive mesh redistribution for the boundary element in elastostatics , 1990 .

[25]  Beatrice Paternoster,et al.  Some new uses of the etam(Z) functions , 2010, Comput. Phys. Commun..

[26]  Raffaele D’Ambrosio,et al.  Numerical solution of a diffusion problem by exponentially fitted finite difference methods , 2014, SpringerPlus.

[27]  G. Arfken Mathematical Methods for Physicists , 1967 .

[28]  Beatrice Paternoster,et al.  Revised exponentially fitted Runge-Kutta-Nyström methods , 2014, Appl. Math. Lett..

[29]  Beatrice Paternoster,et al.  Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an unbounded interval , 2014, J. Comput. Appl. Math..

[30]  Ronald Cools,et al.  Extended quadrature rules for oscillatory integrands , 2003 .

[31]  Gradimir V. Milovanovic,et al.  Gaussian quadratures for oscillatory integrands , 2007, Appl. Math. Lett..

[32]  Beatrice Paternoster,et al.  A Gauss quadrature rule for oscillatory integrands , 2001 .

[33]  Raffaele D'Ambrosio,et al.  Construction of the ef-based Runge-Kutta methods revisited , 2011, Comput. Phys. Commun..

[34]  Weiwei Sun,et al.  A Fast Algorithm for the Electromagnetic Scattering from a Large Cavity , 2005, SIAM J. Sci. Comput..

[35]  Beatrice Paternoster,et al.  Exponentially fitted singly diagonally implicit Runge-Kutta methods , 2014, J. Comput. Appl. Math..

[36]  Robert Frontczak,et al.  On Modified Mellin Transforms, Gauss-Laguerre Quadrature and the Valuation of American Call Options , 2010, J. Comput. Appl. Math..

[37]  G. Vanden Berghe,et al.  Exponentially fitted quadrature rules of Gauss type for oscillatory integrands , 2005 .

[38]  Dugald B. Duncan,et al.  Stability and Convergence of Collocation Schemes for Retarded Potential Integral Equations , 2004, SIAM J. Numer. Anal..