Ab Initio Extension of the AMOEBA Polarizable Force Field to Fe(2.).

We extend the AMOEBA polarizable molecular mechanics force field to the Fe(2+) cation in its singlet, triplet, and quintet spin states. Required parameters are obtained either directly from first principles calculations or optimized so as to reproduce corresponding interaction energy components in a hexaaquo environment derived from quantum mechanical energy decomposition analyses. We assess the importance of the damping of point-dipole polarization at short distance as well as the influence of charge-transfer for metal-water interactions in hydrated Fe(2+); this analysis informs the selection of model systems employed for parametrization. We validate our final Fe(2+) model through comparison of molecular dynamics (MD) simulations to available experimental data for aqueous ferrous ion in its quintet electronic ground state.

[1]  F. Réal,et al.  How does the solvation unveil AtO+ reactivity? , 2013, The journal of physical chemistry. B.

[2]  Anthony J. Stone,et al.  The Theory of Intermolecular Forces , 2013 .

[3]  Jay W. Ponder,et al.  A valence bond model for aqueous Cu(II) and Zn(II) ions in the AMOEBA polarizable force field , 2013, J. Comput. Chem..

[4]  R. Spezia,et al.  Hydration of lanthanoids(III) and actinoids(III): an experimental/theoretical saga. , 2012, Chemistry.

[5]  Denis Jacquemin,et al.  Ab initio quantum chemical and ReaxFF-based study of the intramolecular iminium–enamine conversion in a proline-catalyzed reaction , 2012, Theoretical Chemistry Accounts.

[6]  Chiaolong Hsiao,et al.  RNA Folding and Catalysis Mediated by Iron (II) , 2012, PloS one.

[7]  Wei Yang,et al.  Modeling Structural Coordination and Ligand Binding in Zinc Proteins with a Polarizable Potential. , 2012, Journal of chemical theory and computation.

[8]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[9]  J. Clegg,et al.  Subcomponent self-assembly and guest-binding properties of face-capped Fe4L4(8+) capsules. , 2012, Journal of the American Chemical Society.

[10]  Nohad Gresh,et al.  Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies , 2012, Theoretical Chemistry Accounts.

[11]  M. Solà,et al.  A multi-scale approach to spin crossover in Fe(II) compounds. , 2011, Physical chemistry chemical physics : PCCP.

[12]  T. Simonson,et al.  Free Energy Simulations of a GTPase: GTP and GDP Binding to Archaeal Initiation Factor 2 , 2011, The journal of physical chemistry. B.

[13]  Hui Li,et al.  Intermolecular interaction in water hexamer. , 2010, The journal of physical chemistry. A.

[14]  Jean-Philip Piquemal,et al.  Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. , 2010, Journal of Chemical Theory and Computation.

[15]  B. Randolf,et al.  A quantum mechanical charge field molecular dynamics study of Fe(2+) and Fe(3+) ions in aqueous solutions. , 2010, Inorganic chemistry.

[16]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[17]  B. Randolf,et al.  Chapter 7 - Ab Initio Quantum Mechanical Charge Field Molecular Dynamics—A Nonparametrized First-Principle Approach to Liquids and Solutions , 2010 .

[18]  Donald G Truhlar,et al.  Density functional theory for transition metals and transition metal chemistry. , 2009, Physical chemistry chemical physics : PCCP.

[19]  Piotr Cieplak,et al.  Polarization effects in molecular mechanical force fields , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  Hui Li,et al.  Energy decomposition analysis of covalent bonds and intermolecular interactions. , 2009, The Journal of chemical physics.

[21]  Carmay Lim,et al.  Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions , 2009, J. Comput. Chem..

[22]  J. Dognon,et al.  In silico prediction of atomic static electric-dipole polarizabilities of the early tetravalent actinide ions : Th4+ (5f0), Pa4+ (5f1), and U4+ (5f2) , 2008 .

[23]  K. Rissanen,et al.  An unlockable-relockable iron cage by subcomponent self-assembly. , 2008, Angewandte Chemie.

[24]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[25]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[26]  Jacques Meyer,et al.  Iron–sulfur protein folds, iron–sulfur chemistry, and evolution , 2008, JBIC Journal of Biological Inorganic Chemistry.

[27]  Laura Gagliardi,et al.  A quantum chemical and molecular dynamics study of the coordination of Cm(III) in water. , 2007, Journal of the American Chemical Society.

[28]  Arieh Warshel,et al.  Polarizable Force Fields:  History, Test Cases, and Prospects. , 2007, Journal of chemical theory and computation.

[29]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[30]  D. Rees,et al.  How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation , 2006, Proceedings of the National Academy of Sciences.

[31]  G. Karlström,et al.  Combined quantum chemical statistical mechanical simulations of Mg2+, Ca2+ and Sr2+ in water , 2006 .

[32]  Pengyu Y. Ren,et al.  Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure. , 2006, The Journal of chemical physics.

[33]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[34]  B. Roos,et al.  The coordination of uranyl in water: a combined quantum chemical and molecular simulation study. , 2005, Journal of the American Chemical Society.

[35]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[36]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[37]  K. Hermansson,et al.  Car-Parrinello molecular dynamics simulation of Fe 3+ (aq). , 2005, The journal of physical chemistry. B.

[38]  B. Roos,et al.  New relativistic ANO basis sets for actinide atoms , 2005 .

[39]  J. Dognon,et al.  Accurate static electric dipole polarizability calculations of +3 charged lanthanide ions , 2005 .

[40]  L. Helm,et al.  Inorganic and bioinorganic solvent exchange mechanisms. , 2005, Chemical reviews.

[41]  Mark S. Gordon,et al.  Chapter 41 – Advances in electronic structure theory: GAMESS a decade later , 2005 .

[42]  Pengyu Y. Ren,et al.  Ion solvation thermodynamics from simulation with a polarizable force field. , 2003, Journal of the American Chemical Society.

[43]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[44]  B. Rode,et al.  QM/MM Molecular Dynamics Simulation of the Structure of Hydrated Fe(II) and Fe(III) Ions , 2003 .

[45]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[46]  A. Lewit-Bentley,et al.  EF-hand calcium-binding proteins. , 2000, Current opinion in structural biology.

[47]  Tetsuya Morishita,et al.  Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath , 2000 .

[48]  N B Terwilliger,et al.  Functional adaptations of oxygen-transport proteins. , 1998, The Journal of experimental biology.

[49]  P. T. V. Duijnen,et al.  Molecular and Atomic Polarizabilities: Thole's Model Revisited , 1998 .

[50]  A Klug,et al.  Zinc fingers , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[51]  Yizhak Marcus,et al.  A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes , 1994 .

[52]  Sadlej,et al.  Electron-correlation and relativistic contributions to atomic dipole polarizabilities: Alkali-metal atoms. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[53]  H. Ohtaki,et al.  Structure and dynamics of hydrated ions , 1993 .

[54]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[55]  G. W. Neilson,et al.  Ferrous Fe(II) hydration in a 1 molal heavy water solution of iron chloride , 1992 .

[56]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[57]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[58]  G. Pálinkás,et al.  Hydration of iron(II) ion in aqueous solutions , 1988 .

[59]  Michael Dolg,et al.  Energy‐adjusted ab initio pseudopotentials for the first row transition elements , 1987 .

[60]  Nohad Gresh,et al.  Cation–ligand interactions: Reproduction of extended basis set Ab initio SCF computations by the SIBFA 2 additive procedure , 1985 .

[61]  M. Apted,et al.  Structure and specification of iron complexes in aqueous solutions determined by X-ray absorption spectroscopy , 1985 .

[62]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[63]  J. B. Hastings,et al.  Application of the EXAFS method to Jahn—Teller ions: static and dynamic behavior of Cu(H2O)62+ and Ci(H2O)2+6 in aqueous solution , 1981 .

[64]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[65]  K. E. Newman,et al.  High-pressure oxygen-17 NMR evidence for a gradual mechanistic changeover from Ia to Id for water exchange on divalent octahedral metal ions going from manganese(II) to nickel(II) , 1980 .

[66]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[67]  Toshio Yamaguchi,et al.  X-Ray Diffraction Studies of the Structures of Hydrated Divalent Transition-Metal Ions in Aqueous Solution , 1976 .

[68]  David Beeman,et al.  Some Multistep Methods for Use in Molecular Dynamics Calculations , 1976 .

[69]  R. Kretsinger,et al.  Carp muscle calcium-binding protein. II. Structure determination and general description. , 1973, The Journal of biological chemistry.

[70]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[71]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .