DFT study of bare and dye-sensitized TiO2 clusters and nanocrystals

Structural and electronic properties of bare and dye-sensitized TiO2 clusters and nanoparticles with sizes of ?2 nm have been studied by density functional theory (DFT) calculations. Starting from ...

[1]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[2]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[3]  W. Goddard,et al.  Quantum Chemical Calculations of the Influence of Anchor-Cum-Spacer Groups on Femtosecond Electron Transfer Times in Dye-Sensitized Semiconductor Nanocrystals. , 2006, Journal of chemical theory and computation.

[4]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[5]  L. Ojamäe,et al.  Quantum-chemical studies of metal oxides for photoelectrochemical applications , 2002 .

[6]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[7]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[8]  D. M. Newns,et al.  Chemisorption on metals , 1978 .

[9]  William Stier,et al.  Nonadiabatic Molecular Dynamics Simulation of Light-Induced Electron Transfer from an Anchored Molecular Electron Donor to a Semiconductor Acceptor † , 2002 .

[10]  C. Bignozzi,et al.  Synthesis and comprehensive characterizations of new cis-RuL(2)X(2) (X = Cl, CN, and NCS) sensitizers for nanocrystalline TiO(2) solar cell using Bis-phosphonated bipyridine ligands (L). , 2003, Inorganic chemistry.

[11]  B. Silvi,et al.  Extended gaussian-type valence basis sets for calculations involving non-empirical core pseudopotentials , 1988 .

[12]  Antonio Tilocca,et al.  Time-dependent DFT study of [Fe(CN)6]4- sensitization of TiO2 nanoparticles. , 2004, Journal of the American Chemical Society.

[13]  Mattias Nilsing,et al.  Anchor Group Influence on Molecule-Metal Oxide Interfaces: Periodic Hybrid DFT Study of Pyridine Bound to TiO2 via Carboxylic and Phosphonic Acid , 2005 .

[14]  Petter Persson,et al.  Calculated structural and electronic interactions of the ruthenium dye N3 with a titanium dioxide nanocrystal. , 2005, The journal of physical chemistry. B.

[15]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[16]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[17]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[18]  Guido Busca,et al.  Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review , 1998 .

[19]  L. Curtiss,et al.  Computational studies of catechol and water interactions with titanium oxide nanoparticles. , 2003 .

[20]  J. Hanson,et al.  Nanostructured oxides in chemistry: characterization and properties. , 2004, Chemical reviews.

[21]  John M. Zachara,et al.  Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms. , 1999, Chemical reviews.

[22]  L. Curtiss,et al.  Modeling the Morphology and Phase Stability of TiO2 Nanocrystals in Water. , 2005, Journal of chemical theory and computation.

[23]  C. Catlow,et al.  Pseudopotential periodic hartree-fock study of rutile TiO2 , 1991 .

[24]  M. Causà,et al.  Theoretical analysis of the structures of titanium dioxide crystals. , 1993, Physical review. B, Condensed matter.

[25]  E. Costa,et al.  Phosphonate-based bipyridine dyes for stable photovoltaic devices. , 2001, Inorganic chemistry.

[26]  C. Noguera Insulating Oxides in Low Dimensionality , 2001 .

[27]  S. Lago,et al.  Structure and stability of small TiO2 nanoparticles. , 2005, The journal of physical chemistry. B.

[28]  S. Lunell,et al.  The Smallest Possible Nanocrystals of Semiionic Oxides , 2003 .

[29]  T. Bredow,et al.  SINDO1 study of photocatalytic formation and reactions of OH radicals at anatase particles , 1995 .

[30]  L. Ojamäe,et al.  Phosphonic acid adsorption at the TiO2 anatase (101) surface investigated by periodic hybrid HF-DFT computations, , 2005 .

[31]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[32]  S. Zakeeruddin,et al.  Molecular Engineering of Photosensitizers for Nanocrystalline Solar Cells: Synthesis and Characterization of Ru Dyes Based on Phosphonated Terpyridines. , 1997, Inorganic chemistry.

[33]  F. Jones,et al.  Teeth and bones: applications of surface science to dental materials and related biomaterials , 2001 .

[34]  G. Thornton,et al.  Probing well-characterized metal oxide surfaces with synchrotron radiation , 2001 .

[35]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[36]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[37]  J. Yates,et al.  Photooxidation of CH3Cl on TiO2(110) Single Crystal and Powdered TiO2 Surfaces , 1995 .

[38]  P. Durand,et al.  A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids , 1975 .

[39]  Ivan Kondov,et al.  Theoretical study of ultrafast heterogeneous electron transfer reactions at dye-semiconductor interfaces: coumarin 343 at titanium oxide. , 2006, The journal of physical chemistry. A.

[40]  Oleg G. Poluektov,et al.  Improving Optical and Charge Separation Properties of Nanocrystalline TiO2 by Surface Modification with Vitamin C , 1999 .

[41]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[42]  Petter Persson,et al.  Quantum Chemical Study of Photoinjection Processes in Dye-Sensitized TiO2 Nanoparticles , 2000 .

[43]  L. Ojamäe,et al.  Electronic interactions between aromatic adsorbates and metal oxide substrates calculated from first principles , 2002 .

[44]  Annabella Selloni,et al.  Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations , 2000 .

[45]  N. Harrison,et al.  On the prediction of band gaps from hybrid functional theory , 2001 .

[46]  H. Shin,et al.  Effects of Surface Anchoring Groups (Carboxylate vs Phosphonate) in Ruthenium-Complex-Sensitized TiO2 on Visible Light Reactivity in Aqueous Suspensions , 2004 .

[47]  S. Zakeeruddin,et al.  Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films. [Erratum to document cited in CA122:165412] , 1995 .