Continuous-Variable Quantum Key Distribution Based on Heralded Hybrid Linear Amplifier with a Local Local Oscillator

An improved continuous variable quantum key distribution (CVQKD) approach based on a heralded hybrid linear amplifier (HLA) is proposed in this study, which includes an ideal deterministic linear amplifier and a probabilistic noiseless linear amplifier. The CVQKD, which is based on an amplifier, enhances the signal-to-noise ratio and provides for fine control between high gain and strong noise reduction. We focus on the impact of two types of optical amplifiers on system performance: phase sensitive amplifiers (PSA) and phase insensitive amplifiers (PIA). The results indicate that employing amplifiers, local local oscillation-based CVQKD systems can enhance key rates and communication distances. In addition, the PIA-based CVQKD system has a broader application than the PSA-based system.

[1]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[2]  Hao Qin,et al.  Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution , 2015, 1511.01007.

[3]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[4]  Enhancing continuous variable quantum key distribution with a heralded hybrid linear amplifier , 2019, Journal of Physics A: Mathematical and Theoretical.

[5]  M. Barbieri,et al.  Experimental realization of a nondeterministic optical noiseless amplifier , 2011 .

[6]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[7]  H. Lo,et al.  Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers , 2007, 0709.3666.

[8]  Ying Guo,et al.  Continuous-variable quantum key distribution coexisting with classical signals on few-mode fiber. , 2021, Optics express.

[9]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[10]  Bing Qi,et al.  Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection , 2015, 1503.00662.

[11]  E. Diamanti,et al.  Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers , 2008, 0812.4314.

[12]  Peng Huang,et al.  High-speed continuous-variable quantum key distribution without sending a local oscillator. , 2015, Optics letters.

[13]  Miguel Navascués,et al.  Optimality of Gaussian attacks in continuous-variable quantum cryptography. , 2006, Physical review letters.

[14]  P. Grangier,et al.  Reduction of quantum noise in optical parametric amplification , 1993 .

[15]  Ou,et al.  Quantum noise reduction in optical amplification. , 1993, Physical review letters.

[16]  P. Grangier,et al.  Finite-size analysis of a continuous-variable quantum key distribution , 2010, 1005.0339.

[17]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[18]  T. Ralph,et al.  Nondeterministic Noiseless Linear Amplification of Quantum Systems , 2009 .

[19]  Marco Barbieri,et al.  Nondeterministic noiseless amplification of optical signals: a review of recent experiments , 2011 .

[20]  Paul,et al.  High-accuracy optical homodyne detection with low-efficiency detectors: "Preamplification" from antisqueezing. , 1994, Physical review letters.

[21]  S. McLaughlin,et al.  Quantum key distribution over 25 km with an all-fiber continuous-variable system , 2007, 0706.4255.

[22]  E. Diamanti,et al.  Preventing Calibration Attacks on the Local Oscillator in Continuous-Variable Quantum Key Distribution , 2013, 1304.7024.

[23]  N. Walk,et al.  Heralded noiseless linear amplification and distillation of entanglement , 2009, 0907.3638.

[24]  Juan Ariel Levenson,et al.  Improvement of photodetection quantum efficiency by noiseless optical preamplification , 1995 .

[25]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[26]  Anthony Leverrier,et al.  Composable security proof for continuous-variable quantum key distribution with coherent States. , 2014, Physical review letters.

[27]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[28]  Mu-Sheng Jiang,et al.  Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol , 2013 .

[29]  Christian Weedbrook,et al.  Quantum cryptography without switching. , 2004, Physical review letters.

[30]  N. Cerf,et al.  Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. , 2006, Physical Review Letters.

[31]  M. Barbieri,et al.  Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier , 2012, 1205.0959.

[32]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[33]  Ying Guo,et al.  Passive continuous-variable quantum key distribution using a locally generated local oscillator , 2021, Physical Review A.

[34]  M. Hillery Quantum cryptography with squeezed states , 1999, quant-ph/9909006.

[35]  Patrick J. Coles,et al.  Self-referenced continuous-variable quantum key distribution protocol , 2015, 1503.04763.

[36]  Ying Guo,et al.  Improving the discretely modulated underwater continuous-variable quantum key distribution with heralded hybrid linear amplifier , 2021, Physica Scripta.

[37]  J. S. Shaari,et al.  Advances in Quantum Cryptography , 2019, 1906.01645.

[38]  M. Barbieri,et al.  Implementation of a non-deterministic optical noiseless amplifier , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[39]  M. Bellini,et al.  A high-fidelity noiseless amplifier for quantum light states , 2010, 1004.3399.

[40]  Peng Huang,et al.  Long-distance continuous-variable quantum key distribution by controlling excess noise , 2016, Scientific Reports.

[41]  T Franz,et al.  Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. , 2011, Physical review letters.

[42]  Garreau,et al.  Quantum optical cloning amplifier. , 1993, Physical review letters.

[43]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[44]  Nicolas Gisin,et al.  Quantum cloning with an optical fiber amplifier. , 2002, Physical review letters.

[45]  R. Filip,et al.  Noise-powered probabilistic concentration of phase information , 2010, 1005.3706.

[46]  Ying Guo,et al.  Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel , 2017 .

[47]  L. Liang,et al.  Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems , 2013, 1303.6043.

[48]  G. Guo,et al.  Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack , 2013, 1302.0090.