Study of translational dynamics in molten polymer by variation of gradient pulse-width of PGSE.

[1]  M. Rudemo,et al.  The gamma distribution model for pulsed-field gradient NMR studies of molecular-weight distributions of polymers. , 2012, Journal of magnetic resonance.

[2]  U. Scheler,et al.  Self-diffusion in nanopores studied by the NMR pulse gradient spin echo , 2012 .

[3]  I. Serša,et al.  Analysis of Polymer Dynamics by NMR Modulated Gradient Spin Echo , 2011 .

[4]  K. Saalwächter,et al.  NMR observation of entangled polymer dynamics: tube model predictions and constraint release. , 2010, Physical review letters.

[5]  J. Colmenero,et al.  Chain dynamics of poly(ethylene-alt-propylene) melts by means of coarse-grained simulations based on atomistic molecular dynamics. , 2010, The Journal of chemical physics.

[6]  D. Topgaard,et al.  Determination of the self-diffusion coefficient of intracellular water using PGSE NMR with variable gradient pulse length. , 2009, Journal of magnetic resonance.

[7]  Peter J Basser,et al.  The effect of the diffusion time and pulse gradient duration ratio on the diffraction pattern and the structural information estimated from q-space diffusion MR: experiments and simulations. , 2008, Journal of magnetic resonance.

[8]  E. Fischer,et al.  Nanoscopic Poly(ethylene oxide) Strands Embedded in Semi-Interpenetrating Methacrylate Networks. Preparation Method and Quantitative Characterization by Field-Gradient NMR Diffusometry , 2004 .

[9]  W. Mattice,et al.  Self-diffusion of linear and cyclic alkanes, measured with pulsed-gradient spin-echo nuclear magnetic resonance , 2003 .

[10]  Vlasis G. Mavrantzas,et al.  Crossover from the Rouse to the Entangled Polymer Melt Regime: Signals from Long, Detailed Atomistic Molecular Dynamics Simulations, Supported by Rheological Experiments , 2003 .

[11]  R. Kubo Statistical Physics II: Nonequilibrium Statistical Mechanics , 2003 .

[12]  T. McLeish Tube theory of entangled polymer dynamics , 2002 .

[13]  J C Gore,et al.  Measurements of restricted diffusion using an oscillating gradient spin-echo sequence. , 2000, Journal of magnetic resonance.

[14]  H. Watanabe Viscoelasticity and dynamics of entangled polymers , 1999 .

[15]  P. Callaghan,et al.  Segmental motion of entangled random coil polymers studied by pulsed gradient spin echo nuclear magnetic resonance , 1998 .

[16]  Callaghan,et al.  High magnetic field gradient PGSE NMR in the presence of a large polarizing field , 1998, Journal of magnetic resonance.

[17]  A. Heuer,et al.  Chain-Order Effects in Polymer Melts Probed by 1H Double-Quantum NMR Spectroscopy , 1998 .

[18]  William S. Price,et al.  Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part II. Experimental aspects , 1998 .

[19]  S. Stapf,et al.  Field-Cycling Nuclear Magnetic Resonance Relaxometry and Field-Gradient Nuclear Magnetic Resonance Diffusometry of Polymers Confined in Porous Glasses: Evidence for a Restricted-Geometry Effect , 1996 .

[20]  Paul T. Callaghan,et al.  Frequency-Domain Analysis of Spin Motion Using Modulated-Gradient NMR , 1995 .

[21]  C. Booth,et al.  Role of Molecular Architecture in Polymer Diffusion: A PGSE-NMR Study of Linear and Cyclic Poly(ethylene oxide) , 1995 .

[22]  R. Kimmich,et al.  Theory of field-gradient NMR diffusometry of polymer segment displacements in the tube-reptation model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Partha P. Mitra,et al.  Effects of Finite Gradient-Pulse Widths in Pulsed-Field-Gradient Diffusion Measurements , 1995 .

[24]  M. Appel,et al.  Anomalous Segment Diffusion in Polymer Melts , 1994 .

[25]  Callaghan,et al.  Evidence for reptational motion and the entanglement tube in semidilute polymer solutions. , 1992, Physical review letters.

[26]  J. Viovy,et al.  Constraint release in polymer melts: tube reorganization versus tube dilation , 1991 .

[27]  D. Reneker,et al.  NMR self-diffusion study of polyethylene and paraffin melts , 1985 .

[28]  Janez Stepišnik,et al.  Analysis of NMR self-diffusion measurements by a density matrix calculation , 1981 .

[29]  P. Gennes,et al.  Reptation of a Polymer Chain in the Presence of Fixed Obstacles , 1971 .

[30]  E. Stejskal Use of Spin Echoes in a Pulsed Magnetic‐Field Gradient to Study Anisotropic, Restricted Diffusion and Flow , 1965 .

[31]  H. C. Torrey Bloch Equations with Diffusion Terms , 1956 .

[32]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[33]  P. E. Rouse A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .

[34]  R. Kimmich,et al.  Polymer Chain Dynamics and NMR , 2004 .

[35]  Eiichi Fukushima,et al.  A Multiple-Narrow-Pulse Approximation for Restricted Diffusion in a Time-Varying Field Gradient , 1996 .

[36]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[37]  W. Warren Advances in magnetic and optical resonance , 1990 .

[38]  Janez Stepišnik,et al.  Measuring and imaging of flow by NMR , 1985 .

[39]  Jörg Kärger,et al.  The propagator representation of molecular transport in microporous crystallites , 1983 .

[40]  W. Graessley Entangled linear, branched and network polymer systems — Molecular theories , 1982 .

[41]  S. Edwards,et al.  Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state , 1978 .

[42]  T. L. James,et al.  CHAPTER 2 – PRINCIPLES OF NUCLEAR MAGNETIC RESONANCE , 1975 .

[43]  Dietmar Stehlik,et al.  Dynamic Nuclear Polarization in Liquids , 1968 .

[44]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .