Intraspecific haplotype diversity in Cherleria sedoides L. (Caryophyllaceae) is best explained by chloroplast capture from an extinct species

[1]  Jianquan Liu,et al.  Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor , 2017, Molecular ecology.

[2]  Abigail J. Moore,et al.  A conspectus of the genus Cherleria (Minuartia s.l., Caryophyllaceae) , 2017, Willdenowia.

[3]  C. Carere,et al.  The Tangled Evolutionary Legacies of Range Expansion and Hybridization. , 2016, Trends in ecology & evolution.

[4]  Drew R. Schield,et al.  Genetic surfing, not allopatric divergence, explains spatial sorting of mitochondrial haplotypes in venomous coralsnakes , 2016, Evolution; international journal of organic evolution.

[5]  J. Bousquet,et al.  Integrating phylogeography and paleoecology to investigate the origin and dynamics of hybrid zones: insights from two widespread North American firs , 2015, Molecular ecology.

[6]  J. Kadereit,et al.  What is the origin of the Scottish populations of the European endemic Cherleria sedoides (Caryophyllaceae)? , 2015 .

[7]  C. Hefer,et al.  Whole plastome sequencing reveals deep plastid divergence and cytonuclear discordance between closely related balsam poplars, Populus balsamifera and P. trichocarpa (Salicaceae). , 2014, The New phytologist.

[8]  J. Kadereit,et al.  Maximum polyphyly: Multiple origins and delimitation with plesiomorphic characters require a new circumscription of Minuartia (Caryophyllaceae) , 2014 .

[9]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[10]  J. Kadereit,et al.  The evolution of substrate differentiation in Minuartia series Laricifoliae (Caryophyllaceae) in the European Alps: In situ origin or repeated colonization? , 2013, American journal of botany.

[11]  Tongli Wang,et al.  Adaptation and exogenous selection in a Picea glauca × Picea engelmannii hybrid zone: implications for forest management under climate change , 2013, The New phytologist.

[12]  D. Merges,et al.  The origin of the serpentine endemic Minuartia laricifolia subsp. ophiolitica by vicariance and competitive exclusion , 2013, Molecular ecology.

[13]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[14]  Mark A. Miller,et al.  The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources , 2012, XSEDE '12.

[15]  D. Larkin Lengths and correlates of lag phases in upper-Midwest plant invasions , 2012, Biological Invasions.

[16]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[17]  G. V. Cron,et al.  The genetic ghost of an invasion past: colonization and extinction revealed by historical hybridization in Senecio , 2012, Molecular ecology.

[18]  R. Meentemeyer,et al.  Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion , 2012 .

[19]  Mark A. Miller,et al.  The CIPRES science gateway: a community resource for phylogenetic analyses , 2011, TG.

[20]  D. Hooper,et al.  Functional composition controls invasion success in a California serpentine grassland , 2010 .

[21]  E. Domingo,et al.  Origin and Evolution of Viruses , 2010, Virus Genes.

[22]  L. Excoffier,et al.  Genetic Consequences of Range Expansions , 2009 .

[23]  L. Excoffier,et al.  The Hidden Side of Invasions: Massive Introgression by Local Genes , 2008, Evolution; international journal of organic evolution.

[24]  L. Excoffier,et al.  Surfing during population expansions promotes genetic revolutions and structuration. , 2008, Trends in ecology & evolution.

[25]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[26]  P. Schönswetter,et al.  Molecular evidence for glacial refugia of mountain plants in the European Alps , 2005, Molecular ecology.

[27]  R. Petit,et al.  Hybridization as a mechanism of invasion in oaks , 2003 .

[28]  A. Liston,et al.  Repeat intercontinental dispersal and Pleistocene speciation in disjunct Mediterranean and desert Senecio (Asteraceae). , 2003, American journal of botany.

[29]  Alexei J Drummond,et al.  Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. , 2002, Genetics.

[30]  M. Pemonge,et al.  Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. ilex in Morocco , 2001, Molecular ecology.

[31]  K. Crandall,et al.  TCS: a computer program to estimate gene genealogies , 2000, Molecular ecology.

[32]  J. Searle Phylogeography — The History and Formation of Species , 2000, Heredity.

[33]  Bin Ma,et al.  From Gene Trees to Species Trees , 2000, SIAM J. Comput..

[34]  W. Maddison Gene Trees in Species Trees , 1997 .

[35]  L. Rieseberg,et al.  Phylogenetic consequences of cytoplasmic gene flow in plants. , 1991 .

[36]  D. C. Freeman,et al.  Characterization of a narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata, Asteraceae): VII. Community and demographic analyses , 1991 .

[37]  J. Wendel New World tetraploid cottons contain Old World cytoplasm. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Endler Geographic variation, speciation, and clines. , 1977, Monographs in population biology.

[39]  W. P. Cottam,et al.  Some Clues to Great Basin Postpluvial Climates Provided by Oak Distributions , 1959 .

[40]  L. Caryophyllaceae What is the origin of the Scottish populations of the European endemic Cherleria sedoides , 2016 .

[41]  A. Premoli,et al.  Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. How deep can it be? , 2012, The New phytologist.

[42]  J. Wendel,et al.  The Origin and Evolution of Gossypium , 2010 .

[43]  H. Comes,et al.  Reciprocal hybridization at different times between Senecio flavus and Senecio glaucus gave rise to two polyploid species in north Africa and south-west Asia. , 2006, The New phytologist.