Wideband performance analysis of ground-plane cloak designed with polarization-independent randomly patterned metamaterial

[1]  Patrick M. Knupp,et al.  Fundamentals of Grid Generation , 2020 .

[2]  C. Soukoulis,et al.  Full‐Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase , 2016, Advanced materials.

[3]  I. Koh,et al.  Design of a wideband polarisation-independent metamaterial with arbitrary relative permittivity based on the dielectric mixing theory , 2016 .

[4]  T. Cui,et al.  Shaping 3D Path of Electromagnetic Waves Using Gradient‐Refractive‐Index Metamaterials , 2016, Advancement of science.

[5]  Faxin Yu,et al.  A metasurface carpet cloak for electromagnetic, acoustic and water waves , 2016, Scientific Reports.

[6]  T. Cui,et al.  Broadband All‐Dielectric Magnifying Lens for Far‐Field High‐Resolution Imaging , 2013, Advanced materials.

[7]  T. Cui,et al.  Three-dimensional broadband and broad-angle transformation-optics lens. , 2010, Nature communications.

[8]  Y. Hao,et al.  Discrete Coordinate Transformation for Designing All-Dielectric Flat Antennas , 2010, IEEE Transactions on Antennas and Propagation.

[9]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[10]  F. Gao,et al.  Engineering hybrid nanotube wires for high-power biofuel cells. , 2010, Nature communications.

[11]  David R. Smith,et al.  Extreme-angle broadband metamaterial lens. , 2010, Nature materials.

[12]  M. Popovic,et al.  Spectral Difference Between Microwave Radar and Microwave-Induced Thermoacoustic Signals , 2009, IEEE Antennas and Wireless Propagation Letters.

[13]  David R. Smith,et al.  Metamaterials: Theory, Design, and Applications , 2009 .

[14]  F. Lederer,et al.  Validity of effective material parameters for optical fishnet metamaterials , 2009, 0908.2393.

[15]  Y. Hao,et al.  Ground-plane quasicloaking for free space , 2009, 0902.1692.

[16]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[17]  H. Xin,et al.  Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures. , 2008, Optics express.

[18]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[19]  Ekmel Ozbay,et al.  A planar metamaterial: Polarization independent fishnet structure , 2008 .

[20]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[21]  Ari Sihvola,et al.  Equation for the effective permittivity of particle-filled composites for material design applications , 2007 .

[22]  Vladimir M. Shalaev,et al.  Optical cloaking with metamaterials , 2006, physics/0611242.

[23]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[24]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[25]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[26]  Ari Henrik Sihvola,et al.  How strict are theoretical bounds for dielectric properties of mixtures? , 2001, IEEE Trans. Geosci. Remote. Sens..

[27]  Ari Henrik Sihvola,et al.  Analysis of a three-dimensional dielectric mixture with finite difference method , 2001, IEEE Trans. Geosci. Remote. Sens..

[28]  S. Jones,et al.  Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles , 2000 .

[29]  Ari Henrik Sihvola,et al.  Effective permittivity of mixtures: numerical validation by the FDTD method , 2000, IEEE Trans. Geosci. Remote. Sens..

[30]  Ari Henrik Sihvola,et al.  Studies of mixing formulae in the complex plane , 1991, IEEE Trans. Geosci. Remote. Sens..

[31]  R. Newnham,et al.  Electrical Resistivity of Composites , 1990 .

[32]  J. Kong,et al.  Effective permittivity of dielectric mixtures , 1988 .

[33]  A. Yaghjian,et al.  Electric dyadic Green's functions in the source region , 1980, Proceedings of the IEEE.

[34]  Jiang Zhu,et al.  A Compact Transmission-Line Metamaterial Antenna With Extended Bandwidth , 2009, IEEE Antennas and Wireless Propagation Letters.

[35]  E. Tsymbal,et al.  An ultrathin invisibility skin cloak for visible light , 2022 .