Anisotropic norm-oriented mesh adaptation for a Poisson problem

We present a novel formulation for the mesh adaptation of the approximation of a Partial Differential Equation (PDE). The discussion is restricted to a Poisson problem. The proposed norm-oriented formulation extends the goal-oriented formulation since it is equation-based and uses an adjoint. At the same time, the norm-oriented formulation somewhat supersedes the goal-oriented one since it is basically a solution-convergent method. Indeed, goal-oriented methods rely on the reduction of the error in evaluating a chosen scalar output with the consequence that, as mesh size is increased (more degrees of freedom), only this output is proven to tend to its continuous analog while the solution field itself may not converge. A remarkable quality of goal-oriented metric-based adaptation is the mathematical formulation of the mesh adaptation problem under the form of the optimization, in the well-identified set of metrics, of a well-defined functional. In the new proposed formulation, we amplify this advantage. We search, in the same well-identified set of metrics, the minimum of a norm of the approximation error. The norm is prescribed by the user and the method allows addressing the case of multi-objective adaptation like, for example in aerodynamics, adaptating the mesh for drag, lift and moment in one shot. In this work, we consider the basic linear finite-element approximation and restrict our study to L 2 norm in order to enjoy second-order convergence. Numerical examples for the Poisson problem are computed.

[1]  Adrien Loseille,et al.  Adaptation de maillage anisotrope 3D multi-échelles et ciblée à une fonctionnelle pour la mécanique des fluides : Application à la prédiction haute-fidélité du bang sonique , 2008 .

[2]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[3]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[4]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..

[5]  Yuri V. Vassilevski,et al.  Adaptive generation of quasi-optimal tetrahedral meshes , 1999 .

[6]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[7]  Alain Dervieux,et al.  A mesh‐adaptative metric‐based full multigrid for the Poisson problem , 2015 .

[8]  D. Venditti,et al.  Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .

[9]  Yu. V. Vasilevskii,et al.  An adaptive algorithm for quasioptimal mesh generation , 1999 .

[10]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[11]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[12]  Frédéric Alauzet,et al.  Adaptation de maillage anisotrope en trois dimensions : applications aux simulations instationnaires en mécanique des fluides , 2003 .

[13]  Frédéric Alauzet,et al.  Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows , 2012, J. Comput. Phys..

[14]  A. Dervieux,et al.  FULLY ANISOTROPIC GOAL-ORIENTED MESH ADAPTATION FOR UNSTEADY FLOWS , 2010 .

[15]  Anca Belme,et al.  Aérodynamique instationnaire et méthode adjointe , 2011 .

[16]  Frédéric Alauzet,et al.  Multi-model and multi-scale optimization strategies. Application to sonic boom reduction , 2008 .

[17]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[18]  Michel Fortin,et al.  Anisotropic mesh adaptation - Towards a solver and user independent CFD , 1997 .

[19]  Long Chen,et al.  Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm , 2007, Math. Comput..

[20]  Manuel D. Salas,et al.  Admitting the Inadmissible: Adjoint Formulation for Incomplete Cost Functionals in Aerodynamic Optimization , 1997 .

[21]  Frédéric Alauzet,et al.  Achievement of Global Second Order Mesh Convergence for Discontinuous Flows with Adapted Unstructured Meshes , 2007 .

[22]  Frédéric Alauzet,et al.  An L∞―Lp mesh-adaptive method for computing unsteady bi-fluid flows , 2010 .

[23]  Yuri V. Vassilevski,et al.  Minimization of gradient errors of piecewise linear interpolation on simplicial meshes , 2010 .

[24]  F. Courty,et al.  Continuous metrics and mesh adaptation , 2006 .

[25]  K. Lipnikov,et al.  Hessian-based anisotropic mesh adaptation in domains with discrete boundaries , 2005 .

[26]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[27]  Y. Vassilevski,et al.  Hessian-free metric-based mesh adaptation via geometry of interpolation error , 2010 .

[28]  N. Hitchin A panoramic view of riemannian geometry , 2006 .

[29]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part II: Validations and Applications , 2011, SIAM J. Numer. Anal..

[30]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[31]  Ralf Hartmann,et al.  Multitarget Error Estimation and Adaptivity in Aerodynamic Flow Simulations , 2008, SIAM J. Sci. Comput..

[32]  Frédéric Alauzet,et al.  Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..

[33]  Michael B. Giles,et al.  Improved- lift and drag estimates using adjoint Euler equations , 1999 .

[34]  Frédéric Alauzet,et al.  Anisotropic Norm-Oriented Mesh Adaptation for Compressible Flows , 2015 .

[35]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[36]  David L. Darmofal,et al.  An optimization-based framework for anisotropic simplex mesh adaptation , 2012, J. Comput. Phys..