Flow equation of quantum Einstein gravity in a higher derivative truncation

Motivated by recent evidence indicating that Quantum Einstein Gravity (QEG) might be nonperturbatively renormalizable, the exact renormalization group equation of QEG is evaluated in a truncation of theory space which generalizes the Einstein-Hilbert truncation by the inclusion of a higher-derivative term $(R^2)$. The beta-functions describing the renormalization group flow of the cosmological constant, Newton's constant, and the $R^2$-coupling are computed explicitly. The fixed point (FP) properties of the 3-dimensional flow are investigated, and they are confronted with those of the 2-dimensional Einstein-Hilbert flow. The non-Gaussian FP predicted by the latter is found to generalize to a FP on the enlarged theory space. In order to test the reliability of the $R^2$-truncation near this FP we analyze the residual scheme dependence of various universal quantities; it turns out to be very weak. The two truncations are compared in detail, and their numerical predictions are found to agree with a suprisingly high precision. Due to the consistency of the results it appears increasingly unlikely that the non-Gaussian FP is an artifact of the truncation. If it is present in the exact theory QEG is probably nonperturbatively renormalizable and ``asymptotically safe''. We discuss how the conformal factor problem of Euclidean gravity manifests itself in the exact renormalization group approach and show that, in the $R^2$-truncation, the investigation of the FP is not afflicted with this problem. Also the Gaussian FP of the Einstein-Hilbert truncation is analyzed; it turns out that it does not generalize to a corresponding FP on the enlarged theory space.

[1]  C. Wetterich Effective average action in statistical physics and quantum field theory , 2001 .

[2]  M. Reuter,et al.  Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .

[3]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[4]  Reuter Effective average action of Chern-Simons field theory. , 1996, Physical review. D, Particles and fields.

[5]  K. Stelle Classical gravity with higher derivatives , 1978 .

[6]  N. Barth,et al.  Quantizing fourth-order gravity theories: The functional integral , 1983 .

[7]  D. Litim Optimisation of the exact renormalisation group , 2000, hep-th/0005245.

[8]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[9]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[10]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[11]  L. F. Abbott,et al.  The Background Field Method Beyond One Loop , 1981 .

[12]  C. Wetterich,et al.  Average action for the Higgs model with abelian gauge symmetry , 1993 .

[13]  Daniel F. Litim Critical exponents from optimised renormalisation group flows , 2002 .

[14]  Bergfinnur Durhuus,et al.  Quantum Geometry: A Statistical Field Theory Approach , 1997 .

[15]  E. Tomboulis 1/N Expansion and Renormalization in Quantum Gravity , 1977 .

[16]  S. Adler Einstein Gravity as a Symmetry Breaking Effect in Quantum Field Theory , 1982 .

[17]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[18]  A. Ashtekar,et al.  New variables for classical and quantum gravity. , 1986, Physical review letters.

[19]  M. Reuter Renormalization of the topological charge in Yang-Mills theory , 1996 .

[20]  Martin Reuter,et al.  Effective average action for gauge theories and exact evolution equations , 1994 .

[21]  K. Stelle Renormalization of Higher Derivative Quantum Gravity , 1977 .

[22]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[23]  Quantum Liouville field theory as solution of a flow equation , 1996, hep-th/9605039.

[24]  S. Park,et al.  Dynamical symmetry breaking in four-fermion interaction models , 1991 .

[25]  E. Fradkin,et al.  Renormalizable asymtotically free quantum theory of gravity , 1981 .

[26]  Allen,et al.  Graviton propagator in de Sitter space. , 1986, Physical review. D, Particles and fields.

[27]  A. Barvinsky,et al.  Asymptotic freedom in higher-derivative quantum gravity , 1985 .

[28]  J. Jurkiewicz,et al.  Dynamically Triangulating Lorentzian Quantum Gravity , 2001, hep-th/0105267.

[29]  Flow equations for the relevant part of the pure Yang—Mills action , 1995, hep-th/9506019.

[30]  R. Loll,et al.  A Proper time cure for the conformal sickness in quantum gravity , 2001, hep-th/0103186.

[31]  E. Fradkin,et al.  One-loop effective potential in gauged O(4) supergravity and the problem of the Λ term , 1984 .

[32]  Alfio Bonanno,et al.  Quantum gravity effects near the null black hole singularity , 1999 .

[33]  C. Bervillier,et al.  Exact renormalization group equations. An Introductory review , 2000 .

[34]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[35]  E. Fradkin,et al.  Renormalizable asymptotically free quantum theory of gravity , 1982 .

[36]  C. Wetterich,et al.  Rotation symmetry breaking condensate in a scalar theory , 2000, hep-th/0006099.

[37]  L. Smolin Quantum gravity on a lattice , 1979 .

[38]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[39]  Giorgio Parisi,et al.  The theory of non-renormalizable interactions: The large N expansion , 1975 .

[40]  L. Smolin A fixed point for quantum gravity , 1982 .

[41]  Donoghue,et al.  General relativity as an effective field theory: The leading quantum corrections. , 1994, Physical review. D, Particles and fields.

[42]  Masao Ninomiya,et al.  Renormalization Group and Quantum Gravity , 1990 .

[43]  M. Rubin,et al.  Eigenvalues and degeneracies for n‐dimensional tensor spherical harmonics , 1984 .

[44]  G. Veneziano,et al.  Quantum gravity at large distances and the cosmological constant , 1990 .

[45]  Donoghue,et al.  Leading quantum correction to the Newtonian potential. , 1993, Physical review letters.

[46]  Joseph Polchinski,et al.  Renormalization and effective lagrangians , 1984 .

[47]  M. Reuter,et al.  Induced two-dimensional quantum gravity and SL(2, R) Kac-Moody current algebra , 1989 .

[48]  S. Odintsov,et al.  Exact renormalization group for O(4) gauged supergravity , 1997 .

[49]  de Calan C,et al.  Constructing the three-dimensional Gross-Neveu model with a large number of flavor components. , 1991, Physical review letters.

[50]  C. Wetterich,et al.  Running gauge coupling in three dimensions and the electroweak phase transition , 1993 .

[51]  Elements of the Continuous Renormalization Group , 1998, hep-th/9802039.

[52]  A. Kupiainen,et al.  Renormalization of a non-renormalizable quantum field theory , 1985 .

[53]  Renormalization group improved black hole spacetimes , 2000, hep-th/0002196.

[54]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[55]  C. Wetterich,et al.  Exact evolution equation for scalar electrodynamics , 1994 .

[56]  Exact renormalization group and running Newtonian coupling in higher-derivative gravity , 1997, hep-th/9705008.

[57]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[58]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[59]  A. Ashtekar Lectures on Non-Perturbative Canonical Gravity , 1991 .

[60]  Kupiainen,et al.  Renormalizing the nonrenormalizable. , 1985, Physical review letters.

[61]  M. Rubin,et al.  Symmetric‐tensor eigenspectrum of the Laplacian on n‐spheres , 1985 .

[62]  C. Rovelli,et al.  Perturbative Finiteness in Spin-Foam Quantum Gravity , 2001 .

[63]  J. York Conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial‐value problem of general relativity , 1973 .

[64]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[65]  Gawedzki,et al.  Exact renormalization for the Gross-Neveu model of quantum fields. , 1985, Physical review letters.