Role of Domain Orientations in Forming the Hydrostatic Performance of Novel 2–2 Single Crystal/Polymer Composites

This paper reports results of a detailed study of the effects of the crystallographic orientation on the performance of the 2–2 parallel-connected composites based on relaxor-ferroelectric single crystals of 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3. These single crystals are poled along one of the following directions in the perovskite unit cell: [111] (single-domain state), [001] and [011] (polydomain states). The effect of the orientation of the main crystallographic axes in the single-crystal component on the hydrostatic piezoelectric coefficients d* h , e* h and g* h , squared hydrostatic figure of merit d* h g* h and hydrostatic electromechanical coupling factor k* h of the composites is studied for three cases of the poling direction of 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3. Maximum values of the hydrostatic parameters in the 2–2 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 / polyvinylidene fluoride composites are d* h = 372 pC / N, g* h = 284 mV.m/N, d* h g* h = 33.8.10−12 Pa−1, and k* h = 0.361 (in the presence of the [011]-poled single crystal), and e* h = 45.1 C/m2 (in the presence of the [111]-poled single crystal). The inequality k*33/|k*3j | ≥ 5 (j = 1 and 2) is valid for the composite based on the [111]-poled single crystal under specific conditions. The composites exhibit remarkable properties, and the elastic and piezoelectric anisotropy of the single-crystal component (either [111]- or [011]-poled) plays an important role in achieving the large hydrostatic parameters.

[1]  Wenwu Cao,et al.  Electromechanical properties and anisotropy of single- and multi-domain 0.72Pb(Mg(1∕3)Nb(2∕3))O(3)-0.28PbTiO(3) single crystals. , 2011, Applied physics letters.

[2]  A. V. Krivoruchko,et al.  Polarization orientation effect and combination of electromechanical properties in advanced 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystal/polymer composites with 2–2 connectivity , 2009 .

[3]  Christopher R. Bowen,et al.  Orientation Effects in 1–3 Composites Based on 0.93Pb(Zn1/3Nb2/3)O3– 0.07PbTiO3 Single Crystals , 2008 .

[4]  Christopher R. Bowen,et al.  Electromechanical Properties in Composites Based on Ferroelectrics , 2008 .

[5]  R. Kar-Gupta,et al.  Electromechanical response of piezoelectric composites : Effects of geometric connectivity and grain size , 2008 .

[6]  Chongjun He,et al.  Single-crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3/epoxy 1–3 piezoelectric composites prepared by the lamination technique , 2007 .

[7]  L. Luo,et al.  Complete set of elastic, dielectric, and piezoelectric constants of orthorhombic 0.71Pb(Mg1∕3Nb2∕3)O3–0.29PbTiO3 single crystal , 2007 .

[8]  Ahmad Safari,et al.  Rapid Prototyping of Novel Piezoelectric Composites , 2006 .

[9]  V. Shuvaeva,et al.  The macroscopic symmetry of Pb(Mg1/3Nb2/3)1−xTixO3 in the morphotropic phase boundary region (x = 0.25–0.5) , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Rui Zhang,et al.  Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 single crystal , 2004 .

[11]  C. Choy,et al.  Single crystal PMN-0.33PT/epoxy 1-3 composites for ultrasonic transducer applications , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  Rui Zhang,et al.  Single-domain properties of 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals under electric field bias , 2003 .

[13]  B. Noheda Structure and high-piezoelectricity in lead oxide solid solutions , 2002 .

[14]  Rui Zhang,et al.  Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals , 2001 .

[15]  Salvatore Torquato,et al.  On the use of homogenization theory to design optimal piezocomposites for hydrophone applications , 1997 .

[16]  A. Grekov,et al.  Anomalous behavior of the two-phase lamellar piezoelectric texture , 1987 .

[17]  Gerhard M. Sessler,et al.  Piezoelectricity in polyvinylidenefluoride , 1981 .

[18]  F. Micheron,et al.  Ferroelectric Materials and Their Applications , 1979 .

[19]  Cleve Moler,et al.  Mathematical Handbook for Scientists and Engineers , 1961 .

[20]  I. Zheludev,et al.  Physics of crystalline dielectrics , 1971 .