Criteria for the use of omics-based predictors in clinical trials

[1]  Jill P Mesirov,et al.  Criteria for the use of omics-based predictors in clinical trials: explanation and elaboration , 2013, BMC Medicine.

[2]  Helen M. Moore,et al.  Biospecimen Reporting for Improved Study Quality (BRISQ) , 2013, Transfusion.

[3]  G. Omenn,et al.  Evolution of Translational Omics: Lessons Learned and the Path Forward , 2013 .

[4]  Lisa M McShane,et al.  Publication of tumor marker research results: the necessity for complete and transparent reporting. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  Douglas G Altman,et al.  Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration , 2012, BMC Medicine.

[6]  Karen Phinney,et al.  A proteomics performance standard to support measurement quality in proteomics , 2012, Proteomics.

[7]  D. Carbone,et al.  Leveling the Playing Field: Bringing Development of Biomarkers and Molecular Diagnostics up to the Standards for Drug Development , 2012, Clinical Cancer Research.

[8]  R. Schilsky,et al.  Development and Use of Integral Assays in Clinical Trials , 2012, Clinical Cancer Research.

[9]  M. Woodward,et al.  Risk prediction models: II. External validation, model updating, and impact assessment , 2012, Heart.

[10]  M. Woodward,et al.  Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker , 2012, Heart.

[11]  A. Evans,et al.  Needle core biopsies provide ample material for genomic and proteomic studies of kidney cancer: observations on DNA, RNA, protein extractions and VHL mutation detection. , 2012, Pathology, research and practice.

[12]  Richard D. Smith,et al.  Recommendations for mass spectrometry data quality metrics for open access data (corollary to the Amsterdam principles) , 2012, Proteomics.

[13]  John P A Ioannidis,et al.  Improving Validation Practices in “Omics” Research , 2011, Science.

[14]  L. McShane,et al.  Biostatistical Considerations in Development of Biomarker-Based Tests to Guide Treatment Decisions , 2011 .

[15]  M. Salit,et al.  Synthetic Spike-in Standards for Rna-seq Experiments Material Supplemental Open Access License Commons Creative , 2022 .

[16]  J. Ioannidis,et al.  Strengthening the reporting of genetic risk prediction studies: the GRIPS statement , 2011, Genetics in Medicine.

[17]  David A Cairns,et al.  Statistical issues in quality control of proteomic analyses: Good experimental design and planning , 2011, Proteomics.

[18]  I R König,et al.  Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy. , 2003, Clinical chemistry.

[19]  Kevin K Dobbin,et al.  Optimally splitting cases for training and testing high dimensional classifiers , 2011, BMC Medical Genomics.

[20]  David M. Simcha,et al.  Tackling the widespread and critical impact of batch effects in high-throughput data , 2010, Nature Reviews Genetics.

[21]  Kevin C. Dorff,et al.  The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models , 2010, Nature Biotechnology.

[22]  Rafael A Irizarry,et al.  Frozen robust multiarray analysis (fRMA). , 2010, Biostatistics.

[23]  Birgit Schilling,et al.  Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. , 2010, Journal of proteome research.

[24]  Boris Freidlin,et al.  Randomized clinical trials with biomarkers: design issues. , 2010, Journal of the National Cancer Institute.

[25]  Richard Simon,et al.  Gene expression-based prognostic signatures in lung cancer: ready for clinical use? , 2010, Journal of the National Cancer Institute.

[26]  W. Bruening,et al.  Quality, Regulation and Clinical Utility of Laboratory-developed Molecular Tests , 2010 .

[27]  D. Solís US Food and Drug Administration , 2010 .

[28]  Soonmyung Paik,et al.  Use of archived specimens in evaluation of prognostic and predictive biomarkers. , 2009, Journal of the National Cancer Institute.

[29]  David L. Tabb,et al.  Performance Metrics for Liquid Chromatography-Tandem Mass Spectrometry Systems in Proteomics Analyses* , 2009, Molecular & Cellular Proteomics.

[30]  E. Petricoin,et al.  Tissue is alive: New technologies are needed to address the problems of protein biomarker pre‐analytical variability , 2009, Proteomics. Clinical applications.

[31]  A. Nobel,et al.  Supervised risk predictor of breast cancer based on intrinsic subtypes. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[32]  Lisa M. McShane,et al.  Effective Incorporation of Biomarkers into Phase II Trials , 2009, Clinical Cancer Research.

[33]  J. Abraham The international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use , 2009 .

[34]  Helmut E Meyer,et al.  Approaching clinical proteomics: current state and future fields of application in fluid proteomics , 2009, Clinical chemistry and laboratory medicine.

[35]  P. Laird,et al.  Ovarian Cancer Early Detection Claims Are Biased , 2008, Clinical Cancer Research.

[36]  P. Laird,et al.  Ovarian Cancer Early Detection Claims Are Biased , 2008, Clinical Cancer Research.

[37]  J. Zujewski,et al.  Trial assessing individualized options for treatment for breast cancer: the TAILORx trial. , 2008, Future oncology.

[38]  Insuk Sohn,et al.  Statistical Challenges in Preprocessing in Microarray Experiments in Cancer , 2008, Clinical Cancer Research.

[39]  Jeremy MG Taylor,et al.  Validation of Biomarker-Based Risk Prediction Models , 2008, Clinical Cancer Research.

[40]  M. Stephens,et al.  RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. , 2008, Genome research.

[41]  Terence P. Speed,et al.  Quality Assessment for Short Oligonucleotide Microarray Data , 2007, Technometrics.

[42]  Jianqing Fan,et al.  High Dimensional Classification Using Features Annealed Independence Rules. , 2007, Annals of statistics.

[43]  Jean Amos Wilson Verification and validation of multiplex nucleic acid assays , 2008 .

[44]  Terence P. Speed,et al.  Quality Assessment for Short Oligonucleotide Microarray Data. Rejoinder. , 2008 .

[45]  G. Anderson,et al.  Effects of Blood Collection Conditions on Ovarian Cancer Serum Markers , 2007, PloS one.

[46]  Virginia Gewin,et al.  Missing the mark , 2007, Nature.

[47]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[48]  M. West,et al.  Shotgun Stochastic Search for “Large p” Regression , 2007 .

[49]  Federico Ambrogi,et al.  Challenges in projecting clustering results across gene expression-profiling datasets. , 2007, Journal of the National Cancer Institute.

[50]  A. Dupuy,et al.  Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. , 2007, Journal of the National Cancer Institute.

[51]  M. Fernö,et al.  An improved genetic system for detection and analysis of protein nuclear import signals. , 2007 .

[52]  Rafael A. Irizarry,et al.  A summarization approach for Affymetrix GeneChip data using a reference training set from a large, biologically diverse database , 2006, BMC Bioinformatics.

[53]  J. Sparano,et al.  TAILORx: trial assigning individualized options for treatment (Rx). , 2006, Clinical breast cancer.

[54]  Hanlee P. Ji,et al.  The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. , 2006, Nature biotechnology.

[55]  S. Shak,et al.  A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients , 2006, Breast Cancer Research.

[56]  Maqc Consortium The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements , 2006, Nature Biotechnology.

[57]  Ich Harmonised,et al.  INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE , 2006 .

[58]  L. Reid,et al.  Proposed methods for testing and selecting the ERCC external RNA controls , 2005, BMC Genomics.

[59]  W. Sauerbrei,et al.  Reporting recommendations for tumor marker prognostic studies (REMARK). , 2005, Journal of the National Cancer Institute.

[60]  Annette M. Molinaro,et al.  Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..

[61]  Daniel J Sargent,et al.  Clinical trial designs for predictive marker validation in cancer treatment trials. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[62]  Kenneth H Buetow,et al.  Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrays. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[63]  M. Cronin,et al.  A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. , 2004, The New England journal of medicine.

[64]  M. Pepe,et al.  Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. , 2004, American journal of epidemiology.

[65]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[66]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[67]  Sunil J Rao,et al.  Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis , 2003 .

[68]  T. Speed,et al.  Summaries of Affymetrix GeneChip probe level data. , 2003, Nucleic acids research.

[69]  David Moher,et al.  The STARD Statement for Reporting Studies of Diagnostic Accuracy: Explanation and Elaboration , 2003, Annals of Internal Medicine [serial online].

[70]  M. Radmacher,et al.  Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. , 2003, Journal of the National Cancer Institute.

[71]  B. Alberts National Academies , 2020, The Grants Register 2021.

[72]  S. Jewell,et al.  Copyright © American Society for Investigative Pathology Review Effect of Fixatives and Tissue Processing on the Content and Integrity of Nucleic Acids , 2022 .

[73]  Geoffrey J McLachlan,et al.  Selection bias in gene extraction on the basis of microarray gene-expression data , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[75]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[76]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[78]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[79]  H. Federrath,et al.  Design issues , 2008 .

[80]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .