A Comprehensive Assessment of Somatic Mutation Calling in Cancer Genomes

The emergence of next generation DNA sequencing technology is enabling high-resolution cancer genome analysis. Large-scale projects like the International Cancer Genome Consortium (ICGC) are systematically scanning cancer genomes to identify recurrent somatic mutations. Second generation DNA sequencing, however, is still an evolving technology and procedures, both experimental and analytical, are constantly changing. Thus the research community is still defining a set of best practices for cancer genome data analysis, with no single protocol emerging to fulfil this role. Here we describe an extensive benchmark exercise to identify and resolve issues of somatic mutation calling. Whole genome sequence datasets comprising tumor-normal pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, were shared within the ICGC and submissions of somatic mutation calls were compared to verified mutations and to each other. Varying strategies to call mutations, incomplete awareness of sources of artefacts, and even lack of agreement on what constitutes an artefact or real mutation manifested in widely varying mutation call rates and somewhat low concordance among submissions. We conclude that somatic mutation calling remains an unsolved problem. However, we have identified many issues that are easy to remedy that are presented here. Our study highlights critical issues that need to be addressed before this valuable technology can be routinely used to inform clinical decision-making. Abbreviations and Definitions SSM Somatic Single-base Mutations or Simple Somatic Mutations, refers to a somatic single base change SIM Somatic Insertion/deletion Mutation CNV Copy Number Variant SV Structural Variant SNP Single Nucleotide Polymorphisms, refers to a single base variable position in the germline with a frequency of > 1% in the general population CLL Chronic Lymphocytic Leukaemia MB Medulloblastoma ICGC International Cancer Genome Consortium BM Benchmark aligner = mapper, these terms are used interchangeably

Roland Eils | Pablo H. Hennings-Yeomans | Paul T. Spellman | Eivind Hovig | Peter J. Campbell | Paul C. Boutros | Matthias Schlesner | Hidewaki Nakagawa | David Torrents | Ivo Buchhalter | Thomas J. Hudson | Barbara Hutter | Rolf Kabbe | Nagarajan Paramasivam | Natalie Jäger | Jared T. Simpson | David T. W. Jones | Daniela S. Gerhard | Benedikt Brors | Cyriac Kandoth | Simon Heath | Louis Letourneau | Sigve Nakken | Andy G. Lynch | Laurie Tonon | Víctor Quesada | Lawrence Bower | Philip Ginsbach | Timothy A Beck | Akihiro Fujimoto | Minghui He | Paolo Ribeca | Xose S. Puente | Liu Xi | Singer Ma | David A. Wheeler | Takafumi N. Yamaguchi | Daniel Vodak | Rafael Valdés-Mas | Anne-Sophie Sertier | Semin Lee | Nicholas J. Harding | Marta Gut | Matthew Eldridge | Ivo Gut | P. Spellman | T. Hudson | E. Raineri | Paolo Ribeca | J. McPherson | D. Torrents | R. Eils | S. Heath | D. Wheeler | D. Gerhard | J. Simpson | P. Campbell | P. Boutros | E. Hovig | T. Alioto | V. Quesada | C. Kandoth | P. Tarpey | X. Puente | R. Valdés-Mas | M. Gut | I. Gut | B. Hutter | N. Jäger | M. Schlesner | Minghui He | John Zhang | D. Vodák | S. Nakken | B. Brors | Rolf Kabbe | Myron Peto | Liu Xi | P. Hennings-Yeomans | Semin Lee | L. Heisler | Singer Ma | S. Seth | A. Patch | A. Lynch | S. Derdak | A. Fujimoto | H. Nakagawa | R. Denroche | M. Eldridge | N. Harding | I. Buchhalter | L. Bower | Ruben M. Drews | N. Paramasivam | L. Tonon | A. Sertier | Philip Ginsbach | F. C. Giner | Marc Dabad | Charlotte Anderson | Sahil Seth | Charlotte Anderson | Tyler Alioto | Sophia Derdak | Robert E. Denroche | Patrick S. Tarpey | Lawrence E. Heisler | Emanuele Raineri | Marc Dabad | Myron Peto | Timothy Beck | Sergi Beltran Agullo | Ruben Drews | Francesc Castro Giner | Anne-Marie Patch | John Zhang | John Douglas Mcpherson | Lawrence E Heisler | Louis Letourneau | S. B. Agulló | X. S. Puente | T. Yamaguchi | Akihiro Fujimoto | Lawrence Bower | Daniel Vodák

[1]  Georgina L Ryland,et al.  A simple consensus approach improves somatic mutation prediction accuracy , 2013, Genome Medicine.

[2]  R. Wilson,et al.  Cancer genome sequencing: a review. , 2009, Human molecular genetics.

[3]  klaguia International Network of Cancer Genome Projects , 2010 .

[4]  Simon Heath,et al.  A Note on Exact Differences between Beta Distributions in Genomic (Methylation) Studies , 2014, PloS one.

[5]  Matthew J. Betts,et al.  Dissecting the genomic complexity underlying medulloblastoma , 2012, Nature.

[6]  I. Gut,et al.  DNA sequencing - spanning the generations. , 2012, New biotechnology.

[7]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[8]  Gary D Bader,et al.  International network of cancer genome projects , 2010, Nature.

[9]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[10]  Joshua F. McMichael,et al.  DNMT3A mutations in acute myeloid leukemia. , 2010, The New England journal of medicine.

[11]  Heng Li,et al.  Toward better understanding of artifacts in variant calling from high-coverage samples , 2014, Bioinform..

[12]  Euan A Ashley,et al.  Clinical interpretation and implications of whole-genome sequencing. , 2014, JAMA.

[13]  Juliane C. Dohm,et al.  Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia , 2011, Nature.

[14]  J.,et al.  The New England Journal of Medicine , 2012 .

[15]  Joshua F. McMichael,et al.  DNMT 3 A mutations in acute myeloid leukemia , 2016 .

[16]  Sampsa Hautaniemi,et al.  Comparative analysis of methods for identifying somatic copy number alterations from deep sequencing data , 2015, Briefings Bioinform..