Influence of the baking process for chemically amplified resist on CD performance

CD uniformity and MTT (Mean to Target) control are very important in mask production for the 90nm node and beyond. Although it is well known that baking temperatures influence CD control in the CAR (chemically amplified resist) process for mask patterning, we found that 2 other process factors, which are related to acid diffusion and CA- reaction, greatly affect CD performance. We used a commercially available, negative CAR material and a 50kV exposure tool. We focused on the baking process for both PB (Pre Baking) and PEB (Post Exposure Bake). Film densification strength was evaluated from film thickness loss during PB. Plate temperature distribution was monitored with a thermocouple plate and IR camera. CA-reactions were also monitored with in-situ FTIR during PEB. CD uniformity was used to define the process influence. In conclusion, we found that airflow control and ramping temperature control in the baking process are very important factors to control CD in addition to conventional temperature control. These improvements contributed to a 30 % of reduction in CD variation.