The regional aerosol-climate model REMO-HAM

REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sul- fur dioxide concentrations: Hyyti ¨ al¨ a in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzer- land. REMO-HAM is run with two different resolutions: 50◊ 50 km 2 and 10◊ 10 km 2 . Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat under- estimated. From the meteorological point of view, REMO- HAM represents the precipitation fields and 2 m tempera- ture profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.

[1]  Daniela Jacob,et al.  A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin , 2001 .

[2]  G. Brasseur,et al.  Climate and air pollution modelling in South America with focus on megacities , 2009 .

[3]  Bärbel Langmann,et al.  Numerical modelling of regional scale transport and photochemistry directly together with meteorological processes , 2000 .

[4]  D. Lüthi,et al.  Implementation and evaluation of aerosol and cloud microphysics in a regional climate model , 2011 .

[5]  R. Gehrig,et al.  Long‐term trend analysis of aerosol variables at the high‐alpine site Jungfraujoch , 2007 .

[6]  M. D. Maso,et al.  Probability of nucleation events and aerosol particle concentration in different air mass types arriving at Hyytiälä, southern Finland, based on back trajectories analysis , 2005 .

[7]  P. Smolarkiewicz A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .

[8]  C. O'Dowd,et al.  Primary versus secondary contributions to particle number concentrations in the European boundary layer , 2011 .

[9]  D. L. Roberts,et al.  A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols , 1994, Nature.

[10]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[11]  Brett Paull,et al.  An analysis of the ionic composition of Irish precipitation and background air quality since 1980 based on samples collected at Valentia Observatory, Co. Kerry, Ireland , 2006 .

[12]  D. Jacob,et al.  Sensitivity studies with the regional climate model REMO , 1997 .

[13]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[14]  K. Lehtinen,et al.  Kinetic nucleation and ions in boreal forest particle formation events , 2004 .

[15]  U. Lohmann,et al.  Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM , 2007 .

[16]  C. Timmreck,et al.  Aerosol microphysics modules in the framework of the ECHAM5 climate model – intercomparison under stratospheric conditions , 2009 .

[17]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[18]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[19]  R. Martin,et al.  Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM , 2009 .

[20]  U. Lohmann,et al.  Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM , 2010 .

[21]  G. Mellor,et al.  A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. , 1974 .

[22]  D. Worsnop,et al.  Physicochemical properties and origin of organic groups detected in boreal forest using an aerosol mass spectrometer , 2009 .

[23]  G. Mann,et al.  Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation , 2009 .

[24]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[25]  U. Lohmann,et al.  First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model , 2002 .

[26]  J. Dutoit The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) , 2007 .

[27]  H. Davies,et al.  A lateral boundary formulation for multi-level prediction models. [numerical weather forecasting , 1976 .

[28]  F. Yu,et al.  Regional and global modeling of aerosol optical properties with a size, composition, and mixing state resolved particle microphysics model , 2012 .

[29]  Johann Feichter,et al.  Simulation of the tropospheric sulfur cycle in a global climate model , 1996 .

[30]  A. Wiedensohler,et al.  New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence , 2000 .

[31]  G. Mann,et al.  The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales , 2006 .

[32]  U. Lohmann,et al.  Sensitivity of aerosol concentrations and cloud properties to nucleation and secondary organic distribution in ECHAM5-HAM global circulation model , 2008 .

[33]  M. Facchini,et al.  Cloud condensation nucleus production from nucleation events at a highly polluted region , 2005 .

[34]  S. Varghese,et al.  Aerosol distribution over Europe: a model evaluation study with detailed aerosol microphysics , 2007 .

[35]  M. Claussen,et al.  The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate , 1996 .

[36]  P. Smolarkiewicz A Simple Positive Definite Advection Scheme with Small Implicit Diffusion , 1983 .

[37]  J. Lelieveld,et al.  A dry deposition parameterization for sulfur oxides in a chemistry and general circulation model , 1998 .

[38]  K. D. Beheng A parameterization of warm cloud microphysical conversion processes , 1994 .

[39]  K. Lehtinen,et al.  Changes in the production rate of secondary aerosol particles in Central Europe in view of decreasing SO 2 emissions between 1996 and 2006 , 2009 .

[40]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[41]  Jonathan E. Pleim,et al.  A nested grid mesoscale atmospheric chemistry model , 1991 .

[42]  U. Lohmann,et al.  Cirrus cloud formation and ice supersaturated regions in a global climate model , 2008 .

[43]  S. Pfeifer Modeling cold cloud processes with the regional climate model REMO , 2006 .

[44]  K. Tsigaridis,et al.  Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM , 2011 .

[45]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[46]  Relation of air mass history to nucleation events in Po Valley, Italy, using back trajectories analysis , 2006 .

[47]  J. Wilson,et al.  M7: An efficient size‐resolved aerosol microphysics module for large‐scale aerosol transport models , 2004 .

[48]  J. Lelieveld,et al.  Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. , 1995 .

[49]  Ulrike Lohmann,et al.  Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model , 1996 .

[50]  J. Kristjánsson,et al.  Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model , 1989 .

[51]  Hilding Sundqvist,et al.  A parameterization scheme for non-convective condensation including prediction of cloud water content , 1978 .

[52]  Ari Laaksonen,et al.  Cluster activation theory as an explanation of the linear dependence between formation rate of 3nm particles and sulphuric acid concentration , 2006 .

[53]  Miikka Dal Maso,et al.  Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland , 2005 .

[54]  D. Fahey,et al.  Scales of variability of black carbon plumes over the Pacific Ocean , 2012 .

[55]  J. Lamarque,et al.  A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2 , 2001 .

[56]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[57]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[58]  S. Jennings,et al.  Highlights of Fifty Years of Atmospheric Aerosol Research at Mace Head , 2008 .

[59]  D. Lüthi,et al.  Intercomparison of aerosol climatologies for use in a regional climate model over Europe , 2011 .

[60]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[61]  Hanna Vehkamäki,et al.  Formation and growth rates of ultrafine atmospheric particles: a review of observations , 2004 .

[62]  M. Steinbacher,et al.  Aerosol climatology and planetary boundary influence at the Jungfraujoch analyzed by synoptic weather types , 2011 .

[63]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[64]  P. Adams,et al.  Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates , 2008 .

[65]  Ari Asmi,et al.  SALSA – a Sectional Aerosol module for Large Scale Applications , 2007 .

[66]  C. Timmreck,et al.  An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions , 2002 .

[67]  E. Lovejoy,et al.  A semi-analytical method for calculating rates of new sulfate aerosol formation from the gas phase , 2007 .

[68]  R. Turco,et al.  Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols , 1996 .

[69]  J. Seinfeld Atmospheric Chemistry and Physics of Air Pollution , 1986 .