Describing Visual Scenes Using Transformed Objects and Parts
暂无分享,去创建一个
Antonio Torralba | William T. Freeman | Alan S. Willsky | Erik B. Sudderth | A. Torralba | W. Freeman | A. Willsky
[1] Martin A. Fischler,et al. The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.
[2] Harry G. Barrow,et al. Experiments in Interpretation-Guided Segmentation , 1977, Artificial Intelligence.
[3] R N Shepard,et al. Multidimensional Scaling, Tree-Fitting, and Clustering , 1980, Science.
[4] John F. Canny,et al. A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] E. DeLong,et al. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.
[6] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[7] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[8] Yann LeCun,et al. Transformation Invariance in Pattern Recognition-Tangent Distance and Tangent Propagation , 1996, Neural Networks: Tricks of the Trade.
[9] Elie Bienenstock,et al. Compositionality, MDL Priors, and Object Recognition , 1996, NIPS.
[10] G. Casella,et al. Rao-Blackwellisation of sampling schemes , 1996 .
[11] H H Bülthoff,et al. An Introduction to Object Recognition , 1998, Zeitschrift fur Naturforschung. C, Journal of biosciences.
[12] Michael I. Jordan. Graphical Models , 2003 .
[13] Yee Whye Teh,et al. Learning to Parse Images , 1999, NIPS.
[14] Pietro Perona,et al. Unsupervised Learning of Models for Recognition , 2000, ECCV.
[15] Paul A. Viola,et al. Learning from one example through shared densities on transforms , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).
[16] M. Escobar,et al. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[17] S. MacEachern. Decision Theoretic Aspects of Dependent Nonparametric Processes , 2000 .
[18] Brendan J. Frey,et al. Learning flexible sprites in video layers , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
[19] Lancelot F. James,et al. Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .
[20] Paul A. Viola,et al. Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.
[21] Shimon Ullman,et al. Class-Specific, Top-Down Segmentation , 2002, ECCV.
[22] H. Ishwaran,et al. DIRICHLET PRIOR SIEVES IN FINITE NORMAL MIXTURES , 2002 .
[23] Jiri Matas,et al. Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..
[24] Michel Vidal-Naquet,et al. Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.
[25] Pietro Perona,et al. Mutual Boosting for Contextual Inference , 2003, NIPS.
[26] Christophe Chefd'Hotel,et al. Practical non-parametric density estimation on a transformation group for vision , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[27] David A. Forsyth,et al. Matching Words and Pictures , 2003, J. Mach. Learn. Res..
[28] Antonio Torralba,et al. Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes , 2003, NIPS.
[29] Christopher K. I. Williams,et al. Dynamic trees for image modelling , 2003, Image Vis. Comput..
[30] B. Frey,et al. Transformation-Invariant Clustering Using the EM Algorithm , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[31] Zhuowen Tu,et al. Image Parsing: Unifying Segmentation, Detection, and Recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[32] Christopher K. I. Williams,et al. Image Modeling with Position-Encoding Dynamic Trees , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[33] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[34] S. MacEachern,et al. An ANOVA Model for Dependent Random Measures , 2004 .
[35] Miguel Á. Carreira-Perpiñán,et al. Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..
[36] B. Schiele,et al. Combined Object Categorization and Segmentation With an Implicit Shape Model , 2004 .
[37] Peter Kovesi,et al. MATLAB Functions for Computer Vision and Image Analysis , 2004 .
[38] G LoweDavid,et al. Distinctive Image Features from Scale-Invariant Keypoints , 2004 .
[39] Antonio Torralba,et al. Sharing features: efficient boosting procedures for multiclass object detection , 2004, CVPR 2004.
[40] Thomas L. Griffiths,et al. The Author-Topic Model for Authors and Documents , 2004, UAI.
[41] Cordelia Schmid,et al. Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.
[42] David G. Lowe,et al. Object Class Recognition with Many Local Features , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.
[43] Pietro Perona,et al. Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.
[44] Gabriela Csurka,et al. Visual categorization with bags of keypoints , 2002, eccv 2004.
[45] Antonio Torralba,et al. Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.
[46] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[47] Y. LeCun,et al. Learning methods for generic object recognition with invariance to pose and lighting , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..
[48] Jerry Nedelman,et al. Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..
[49] David A. Forsyth,et al. Efficient Unsupervised Learning for Localization and Detection in Object Categories , 2005, NIPS.
[50] Antonio Torralba,et al. Describing Visual Scenes using Transformed Dirichlet Processes , 2005, NIPS.
[51] Pietro Perona,et al. A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[52] Pietro Perona,et al. Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.
[53] Antonio Torralba,et al. Learning hierarchical models of scenes, objects, and parts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.
[54] Alexei A. Efros,et al. Discovering objects and their location in images , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.
[55] Stuart J. Russell,et al. BLOG: Probabilistic Models with Unknown Objects , 2005, IJCAI.
[56] S. MacEachern,et al. Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .
[57] Cordelia Schmid,et al. A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..
[58] Andrew Zisserman,et al. Scene Classification Via pLSA , 2006, ECCV.
[59] Stuart Geman,et al. Context and Hierarchy in a Probabilistic Image Model , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[60] Yali Amit,et al. Generative Models for Labeling Multi-object Configurations in Images , 2006, Toward Category-Level Object Recognition.
[61] Antonio Torralba,et al. Depth from Familiar Objects: A Hierarchical Model for 3D Scenes , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[62] Christopher K. I. Williams,et al. On a connection between object localization with a generative template of features and pose-space prediction methods , 2006 .
[63] Cordelia Schmid,et al. Toward Category-Level Object Recognition , 2006, Toward Category-Level Object Recognition.
[64] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[65] Erik B. Sudderth. Graphical models for visual object recognition and tracking , 2006 .
[66] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[67] Antonio Torralba,et al. LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.
[68] Mary P. Harper,et al. Spatial Random Tree Grammars for Modeling Hierarchal Structure in Images with Regions of Arbitrary Shape , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[69] A. Gelfand,et al. The Nested Dirichlet Process , 2008 .