Symmetric halogen bonding is preferred in solution.

Halogen bonding is a recently rediscovered secondary interaction that shows potential to become a complementary molecular tool to hydrogen bonding in rational drug design and in material sciences. Whereas hydrogen bond symmetry has been the subject of systematic studies for decades, the understanding of the analogous three-center halogen bonds is yet in its infancy. The isotopic perturbation of equilibrium (IPE) technique with (13)C NMR detection was applied to regioselectively deuterated pyridine complexes to investigate the symmetry of [N-I-N](+) and [N-Br-N](+) halogen bonding in solution. Preference for a symmetric arrangement was observed for both a freely adjustable and for a conformationally restricted [N-X-N](+) model system, as also confirmed by computation on the DFT level. A closely attached counterion is shown to be compatible with the preferred symmetric arrangement. The experimental observations and computational predictions reveal a high energetic gain upon formation of symmetric, three-center four-electron halogen bonding. Whereas hydrogen bonds are generally asymmetric in solution and symmetric in the crystalline state, the analogous bromine and iodine centered halogen bonds prefer symmetric arrangement in solution.

[1]  Jacopo Tomasi,et al.  Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries , 1997 .

[2]  M. Toney,et al.  NMR studies of solvent-assisted proton transfer in a biologically relevant Schiff base: toward a distinction of geometric and equilibrium H-bond isotope effects. , 2006, Journal of the American Chemical Society.

[3]  O. Jeannin,et al.  Combining halogen bonding and chirality in a two-dimensional organic metal (EDT-TTF-I2)2(D-camphorsulfonate).H2O. , 2010, Chemical communications.

[4]  C. Perrin,et al.  Symmetry of metal chelates. , 2000, Inorganic chemistry.

[5]  Marc Fourmigué,et al.  Activation of hydrogen- and halogen-bonding interactions in tetrathiafulvalene-based crystalline molecular conductors. , 2004, Chemical reviews.

[6]  A. Karlén,et al.  Insight into β-hairpin stability: a structural and thermodynamic study of diastereomeric β-hairpin mimeticsElectronic supplementary information (ESI) available: temperature and concentration-dependent chemical shifts and melting curves of the investigated molecules in different solvents and details , 2002 .

[7]  P Shing Ho,et al.  Directing macromolecular conformation through halogen bonds , 2007, Proceedings of the National Academy of Sciences.

[8]  P. Tolstoy,et al.  Reaction pathways of proton transfer in hydrogen-bonded phenol-carboxylate complexes explored by combined UV-vis and NMR spectroscopy. , 2011, Journal of the American Chemical Society.

[9]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[10]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[11]  A. Becke A real-space model of nondynamical correlation , 2003 .

[12]  C. Perrin,et al.  Stereochemistry of β-deuterium isotope effects on amine basicity , 2005 .

[13]  K. Houk,et al.  Short, Strong Hydrogen Bonds in the Gas Phase and in Solution: Theoretical Exploration of pKa Matching and Environmental Effects on the Strengths of Hydrogen Bonds and Their Potential Roles in Enzymatic Catalysis , 1998 .

[14]  J. Elguero,et al.  Symmetrization of cationic hydrogen bridges of protonated sponges induced by solvent and counteranion interactions as revealed by NMR spectroscopy. , 2010, Chemistry.

[15]  A. Matzger,et al.  Synthesis, Crystal Structure, and Polymerization of 1,2:5,6:9,10-Tribenzo-3,7,11,13-tetradehydro[14]annulene , 1995 .

[16]  Mark S. Taylor,et al.  A tridentate halogen-bonding receptor for tight binding of halide anions. , 2010, Angewandte Chemie.

[17]  C. Perrin,et al.  No contribution of an inductive effect to secondary deuterium isotope effects on acidity. , 2011, Angewandte Chemie.

[18]  Weiliang Zhu,et al.  Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. , 2010, Physical chemistry chemical physics : PCCP.

[19]  A. Gogoll,et al.  Rapid homogeneous-phase Sonogashira coupling reactions using controlled microwave heating. , 2001, The Journal of organic chemistry.

[20]  K. Rissanen,et al.  Dimensional encapsulation of I(-)...I(2)...I(-) in an organic salt crystal matrix. , 2010, Chemical communications.

[21]  Pierangelo Metrangolo,et al.  Engineering functional materials by halogen bonding , 2007 .

[22]  Philippe Y. Ayala,et al.  Identification and treatment of internal rotation in normal mode vibrational analysis , 1998 .

[23]  C. Perrin,et al.  Asymmetry of the "strongest" OHO hydrogen bond, in the monoanion of (+/-)-alpha,alpha'-di-tert-butylsuccinate. , 2009, Journal of the American Chemical Society.

[24]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[25]  J. Barluenga Transferring iodine: more than a simple functional group exchange in organic synthesis , 1999 .

[26]  N. Winssinger,et al.  IPy2BF4‐Mediated Glycosylation and Glycosyl Fluoride Formation , 2007 .

[27]  R. E. Hough,et al.  Evidence for -Chlorocarbenium and -Bromocarbenium Ions , 2007 .

[28]  G. Olah,et al.  Stable carbonium ions. LXII. Halonium ion formation via neighboring halogen participation: ethylenehalonium, propylenehalonium, and 1,2-dimethylethylenehalonium ions , 1968 .

[29]  Pierangelo Metrangolo,et al.  Halogen bonding in halocarbon-protein complexes: a structural survey. , 2011, Chemical Society reviews.

[30]  S. Meier,et al.  Adiabatic low-pass J filters for artifact suppression in heteronuclear NMR. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  Miguel A. Rodríguez,et al.  Synthesis of 2-functionalized 1-chloro-1-iodo-1-alkenes from 1-chloro-1-alkynes and IPy2BF4 , 1990 .

[32]  R. Lynden-Bell,et al.  Interactions of triiodide cluster ion with solvents , 2005 .

[33]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[34]  Timothy J. Dudley,et al.  Theoretical evidence for the nucleophilic addition of sulfur dioxide to 1,2-bridged chloronium and bromonium ions. , 2008, The Journal of organic chemistry.

[35]  M. Sekine,et al.  Synthesis and properties of oligonucleotides with iodo-substituted aromatic aglycons: investigation of possible halogen bonding base pairs. , 2008, The Journal of organic chemistry.

[36]  Weiliang Zhu,et al.  Halogen bonding--a novel interaction for rational drug design? , 2009, Journal of medicinal chemistry.

[37]  C. Uriel,et al.  IPy2BF4/HF-pyridine: a new combination of reagents for the transformation of partially unprotected thioglycosides and n-pentenyl glycosides to glycosyl fluorides. , 2007, The Journal of organic chemistry.

[38]  N. A. Sörensen,et al.  Structure of the Solid Compound Formed by Addition of Two Molecules of Iodine to One Molecule of Pyridine. , 1961 .

[39]  H. Hope,et al.  Crystal structure of the bis(thiourea)iodine(I) ion , 1970 .

[40]  C. Margulis,et al.  A Monte Carlo study of symmetry breaking of I3− in aqueous solution using a multistate diabatic Hamiltonian , 2001 .

[41]  J. Sabin A theoretical study of the bis(pyridine)iodine(I) cation , 1971 .

[42]  C. R. Strauss,et al.  Developments in Microwave-Assisted Organic Chemistry , 1995 .

[43]  H. Hope,et al.  The crystal structure of bis(thiourea)iodine(I) iodide , 1972 .

[44]  R. Duthaler,et al.  Effects of solvent, protonation, and N-alkylation on the nitrogen-15 chemical shifts of pyridine and related compounds , 1978 .

[45]  Paulo J. Costa,et al.  Halogen bond anion templated assembly of an imidazolium pseudorotaxane. , 2010, Angewandte Chemie.

[46]  C. Perrin,et al.  Hydrogen-bond symmetry in zwitterionic phthalate anions: symmetry breaking by solvation. , 2006, Journal of the American Chemical Society.

[47]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Whitwood,et al.  Structure-function relationships in liquid-crystalline halogen-bonded complexes. , 2010, Chemistry.

[49]  C. Perrin,et al.  Position-specific secondary deuterium isotope effects on basicity of pyridine. , 2010, Journal of the American Chemical Society.

[50]  H. Siehl Isotope Effects on nmr Spectra of Equilibrating Systems , 1987 .

[51]  N. A. Sörensen,et al.  The Structure of Bromine 1,4-Dioxanate. , 1954 .

[52]  P. Tolstoy,et al.  Counteranion-dependent mechanisms of intramolecular proton transfer in aprotic solution. , 2010, Physical chemistry chemical physics : PCCP.

[53]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[54]  C. Perrin,et al.  Symmetry of O-H-O and N-H-N hydrogen bonds in 6-hydroxy-2-formylfulvene and 6-aminofulvene-2-aldimines. , 2002, Bioorganic chemistry.

[55]  Mohammed G. Sarwar,et al.  Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects. , 2010, Journal of the American Chemical Society.

[56]  P. Frey,et al.  Understanding enzymic catalysis: the importance of short, strong hydrogen bonds. , 1997, Chemistry & biology.

[57]  C. Perrin,et al.  Symmetry of the Hydrogen Bond in Malonaldehyde Enol in Solution , 1998 .

[58]  J. Bergquist,et al.  Symmetry of [N-X-N]+ halogen bonds in solution. , 2012, Chemical communications.

[59]  P. Metrangolo,et al.  A halogen-bonding-based heteroditopic receptor for alkali metal halides. , 2005, Journal of the American Chemical Society.

[60]  M. Erdélyi,et al.  Halogen bonding in solution. , 2012, Chemical Society reviews.

[61]  P. Metrangolo,et al.  Perfluorocarbon–hydrocarbon self-assembly: Part 16. 19F NMR study of the halogen bonding between halo-perfluorocarbons and heteroatom containing hydrocarbons , 2002 .

[62]  Pierangelo Metrangolo,et al.  Halogen bonding in supramolecular chemistry. , 2008, Angewandte Chemie.

[63]  O. Hassel,et al.  Structural aspects of interatomic charge-transfer bonding. , 1970, Science.

[64]  Keiamars Eskandari,et al.  Halogen bonding: A lump–hole interaction , 2010 .

[65]  H. A. Levy,et al.  A centred hydrogen bond in potassium hydrogen chloromaleate: a neutron diffraction structure determination , 1965 .

[66]  Miguel A. Rodríguez,et al.  ELECTROPHILIC ADDITIONS OF POSITIVE IODINE TO ALKYNES THROUGH AN IODONIUM MECHANISM , 1990 .

[67]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[68]  D. Cremer,et al.  The self-interaction error and the description of non-dynamic electron correlation in density functional theory , 2009 .

[69]  N. Alcock,et al.  Crystal and molecular structure of bis(quinoline)bromine perchlorate , 1976 .

[70]  Henry A. Bent,et al.  Structural chemistry of donor-acceptor interactions , 1968 .

[71]  Richard L Martin,et al.  Revised Basis Sets for the LANL Effective Core Potentials. , 2008, Journal of chemical theory and computation.

[72]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[73]  Giovanni Scalmani,et al.  New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution , 2002 .

[74]  C. Perrin,et al.  Are short, low-barrier hydrogen bonds unusually strong? , 2010, Accounts of chemical research.

[75]  T. Parella Pulsed field gradients: a new tool for routine NMR , 1998 .

[76]  P. Gros,et al.  Lithiation of 2-heterosubstituted pyridines with BuLi-LiDMAE: evidence for regiospecificity at C-6. , 2002, The Journal of organic chemistry.

[77]  H. Limbach,et al.  Solid State15N NMR and Theoretical Studies of Primary and Secondary Geometric H/D Isotope Effects on Low-Barrier NHN−Hydrogen Bonds , 1998 .

[78]  R. Mooney The Configuration of the Triiodide Group in Ammonium Triiodide Crystals , 1935 .

[79]  C. Perrin,et al.  Are there single-well hydrogen bonds in pyridine-dichloroacetic acid complexes? , 2010, Chemical communications.

[80]  Kevin E. Riley,et al.  A DFT-D investigation of the mechanisms for activation of the wild-type and S810L mutated mineralocorticoid receptor by steroid hormones. , 2008, Journal of Physical Chemistry B.

[81]  G. Cavallo,et al.  Halogen bonding: a general route in anion recognition and coordination. , 2010, Chemical Society reviews.

[82]  M. Iyoda,et al.  Synthesis and Properties of Cyclic [5]meta-Phenyleneacetylene and Its Corresponding Cyclophane Polyone, [25](1,3)Cyclophanedecaone , 2008 .

[83]  F. Guthrie,et al.  XXVIII.—On the iodide of iodammonium , 1863 .

[84]  P Shing Ho,et al.  Halogen bonds as orthogonal molecular interactions to hydrogen bonds. , 2009, Nature chemistry.

[85]  Mark S. Taylor,et al.  Measurements of weak halogen bond donor abilities with tridentate anion receptors. , 2010, Chemical communications.

[86]  F. López,et al.  Iodofunctionalization of alkynylsulfides with IPy2BF4 , 1990 .

[87]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[88]  C. Perrin Symmetry of hydrogen bonds in solution , 2009 .

[89]  R. S. Brown,et al.  Bis(pyridine)-based bromonium ions. Molecular structures of bis(2,4,6-collidine)bromonium perchlorate and bis(pyridine)bromonium triflate and the mechanism of the reactions of 1,2-bis(2'-pyridylethynyl)benzenebrominum triflate and bis(pyridine)bromonium triflate with acceptor olefins. , 2003, The Journal of organic chemistry.

[90]  P. Metrangolo,et al.  Halogen bonding: a paradigm in supramolecular chemistry. , 2001, Chemistry.

[91]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[92]  P. Auban-Senzier,et al.  Anionic layered networks reconstructed from [Cd(SCN)3]infinity(-) chains in pseudo one-dimensional conducting salts of halogenated tetrathiafulvalenes. , 2008, Inorganic chemistry.

[93]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[94]  Timothy Clark,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[95]  M. Garcia-Martin,et al.  Polyiodination on benzene at room temperature a regioselective synthesis of derivatives. , 1993 .

[96]  Pierangelo Metrangolo,et al.  Halogen bonding based recognition processes: a world parallel to hydrogen bonding. , 2005, Accounts of chemical research.

[97]  H. Tasman,et al.  Re-investigation of the crystal structure of CsI3 , 1955 .

[98]  W. Cleland,et al.  Low-barrier hydrogen bonds and enzymic catalysis. , 1994, Science.

[99]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[100]  K. Parris,et al.  A stable bromine(+) ion complex. A twisted bicyclo[2.2.2]octane derivative. Synthesis and structure of bis(quinuclidine)bromine(I) tetrafluoroborate , 1983 .

[101]  R. M. Slater The triiodide ion in tetraphenyl arsonium triiodide , 1959 .

[102]  C. Perrin,et al.  Symmetry of N-H-N hydrogen bonds in 1,8-bis(dimethylamino)naphthalene.H+ and 2,7-dimethoxy-1,8-bis(dimethylamino)naphthalene.H+. , 2001, Journal of the American Chemical Society.

[103]  F. Hirata,et al.  Theoretical Study of the Solvent Effect on Triiodide Ion in Solutions , 1998 .

[104]  E. V. Borisov,et al.  Variable‐temperature NMR study of the enol forms of benzoylacetones , 2005, Magnetic resonance in chemistry : MRC.

[105]  J. Elguero,et al.  15N-15N spin-spin coupling constants through intermolecular hydrogen bonds in the solid state. , 2010, Journal of magnetic resonance.

[106]  M. Saunders,et al.  Isotopic perturbation of degeneracy. Carbon-13 nuclear magnetic resonance spectra of dimethylcyclopentyl and dimethylnorbornyl cations , 1977 .

[107]  J. Emsley Very strong hydrogen bonding , 1980 .

[108]  Peter Politzer,et al.  An overview of halogen bonding , 2007, Journal of molecular modeling.

[109]  D. A. Singleton,et al.  Isotope-induced desymmetrization can mimic isotopic perturbation of equilibria. On the symmetry of bromonium ions and hydrogen bonds. , 2011, Journal of the American Chemical Society.

[110]  J. L. Wood,et al.  The vibrational spectra and structure of the bis(pyridine)iodine(I), bis(pyridine)bromine(I), bis(γ-picoline)iodine-(I) and bis(γ-picollne)bromine(I) cations , 1968 .

[111]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[112]  C. Margulis,et al.  Symmetry breaking of the triiodide ion in acetonitrile solution , 2001 .

[113]  I. Schuster,et al.  Halogen complexes of pyridines. A proton and carbon-13 nuclear magnetic resonance study , 1979 .

[114]  A. Whitwood,et al.  Mesogenic, trimeric, halogen-bonded complexes from alkoxystilbazoles and 1,4-diiodotetrafluorobenzene , 2008 .

[115]  C. Perrin,et al.  Symmetries of Hydrogen Bonds in Solution , 1994, Science.

[116]  J. Barluenga,et al.  Bis(pyridine)iodonium tetrafluoroborate (IPy2BF4): a versatile oxidizing reagent. , 2004, Chemistry.

[117]  François Diederich,et al.  Systematic investigation of halogen bonding in protein-ligand interactions. , 2011, Angewandte Chemie.

[118]  G. Valencia,et al.  Selective solid-phase iodination of phenolic groups with bis(pyridine)iodonium (I) tetrafluoroborate , 1999 .