Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance

Here, means to enhance power conversion efficiency (PCE or η) in bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells by optimizing the series resistance (Rs)—also known as the cell internal resistance—are studied. It is shown that current state-of-the-art BHJ OPVs are approaching the limit for which efficiency can be improved via Rs reduction alone. This evaluation addresses OPVs based on a poly(3-hexylthiophene):6,6-phenyl C61-butyric acid methyl ester (P3HT:PCBM) active layer, as well as future high-efficiency OPVs (η > 10%). A diode-based modeling approach is used to assess changes in Rs. Given that typical published P3HT:PCBM test cells have relatively small areas (∼0.1 cm2), the analysis is extended to consider efficiency losses for larger area cells and shows that the transparent anode conductivity is then the dominant materials parameter affecting Rs efficiency losses. A model is developed that uses cell sizes and anode conductivities to predict current–voltage response as a function of resistive losses. The results show that the losses due to Rs remain minimal until relatively large cell areas (>0.1 cm2) are employed. Finally, Rs effects on a projected high-efficiency OPV scenario are assessed, based on the goal of cell efficiencies >10%. Here, Rs optimization effects remain modest; however, there are now more pronounced losses due to cell size, and it is shown how these losses can be mitigated by using higher conductivity anodes.

[1]  C. J. Adkins,et al.  Intrinsic performance limits in transparent conducting oxides , 1992 .

[2]  R. Janssen,et al.  Monte-Carlo simulations of geminate electron-hole pair dissociation in a molecular heterojunction: a two-step dissociation mechanism , 2005 .

[3]  Robert W. Birkmire,et al.  POLYCRYSTALLINE THIN FILM SOLAR CELLS:Present Status and Future Potential , 1997 .

[4]  F. A. Shirland The history, design, fabrication and performance of CdS thin film solar cells , 1966 .

[5]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[6]  T. Marks,et al.  High-efficiency hole extraction/electron-blocking layer to replace poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) in bulk-heterojunction polymer solar cells , 2008 .

[7]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[8]  G. V. Chester,et al.  Solid State Physics , 2000 .

[9]  Nerayo P. Teclemariam,et al.  Charge transport in hybrid nanorod-polymer composite photovoltaic cells , 2002 .

[10]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[11]  Amy M. Ballantyne,et al.  Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends , 2008 .

[12]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[13]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 30) , 2007 .

[14]  Martijn Lenes,et al.  Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years) , 2008 .

[15]  Robert Mertens,et al.  Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions , 2002 .

[16]  R. Gordon Criteria for Choosing Transparent Conductors , 2000 .

[17]  Thuc‐Quyen Nguyen,et al.  A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells , 2009 .

[18]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[19]  S. Forrest,et al.  Controlled growth of a molecular bulk heterojunction photovoltaic cell , 2004 .

[20]  J. Frenkel,et al.  On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors , 1938 .

[21]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[22]  David Braun,et al.  Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells , 1993 .

[23]  A. Freeman,et al.  Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: Clues for optimizing transparent conductors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  B. Gregg,et al.  Coulomb forces and doping in organic semiconductors , 2004 .

[25]  K. S. Narayan,et al.  Area dependent efficiency of organic solar cells , 2008 .

[26]  R. Friend,et al.  A unified description of current-voltage characteristics in organic and hybrid photovoltaics under low light intensity. , 2008, Nano letters.

[27]  M. Yokoyama,et al.  Reduction of series resistance in organic photovoltaic cells using a metal-doped layer , 2005 .

[28]  N. C. Wyeth,et al.  Sheet resistance component of series resistance in a solar cell as a function of grid geometry , 1977 .

[29]  B. Kippelen Organic Photovoltaics , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[30]  Raj René Janssen,et al.  The Energy of Charge‐Transfer States in Electron Donor–Acceptor Blends: Insight into the Energy Losses in Organic Solar Cells , 2009 .

[31]  C. Sah,et al.  Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics , 1957, Proceedings of the IRE.

[32]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[33]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[34]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[35]  Christoph J. Brabec,et al.  Simulation of light intensity dependent current characteristics of polymer solar cells , 2004 .

[36]  Ingo Riedel,et al.  Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices , 2004 .

[37]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[38]  C. McNeill,et al.  Efficient Polythiophene/Polyfluorene Copolymer Bulk Heterojunction Photovoltaic Devices: Device Physics and Annealing Effects , 2008 .

[39]  J. Nelson The physics of solar cells , 2003 .

[40]  Edward Van Keuren,et al.  Endohedral fullerenes for organic photovoltaic devices. , 2009, Nature materials.

[41]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals , 1982 .

[42]  Christoph J. Brabec,et al.  Organic photovoltaics: technology and market , 2004 .

[43]  J. Wager,et al.  Transparent Electronics , 2003, Science.

[44]  E. Fortunato,et al.  Transparent Conducting Oxides for Photovoltaics , 2007 .

[45]  H. Hosono Recent progress in transparent oxide semiconductors: Materials and device application , 2007 .

[46]  John C. deMello,et al.  On the pseudo-symmetric current–voltage response of bulk heterojunction solar cells , 2008 .

[47]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[48]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[49]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[50]  Charles L. Braun,et al.  Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production , 1984 .

[51]  Julian F. Randall,et al.  Fundamentals of Solar Cells , 2006 .

[52]  Christoph J. Brabec,et al.  Material and device concepts for organic photovoltaics: towards competitive efficiencies , 2004 .

[53]  Christoph J. Brabec,et al.  Performance Analysis of Printed Bulk Heterojunction Solar Cells , 2006 .

[54]  Valentin D. Mihailetchi,et al.  Device model for the operation of polymer/fullerene bulk heterojunction solar cells , 2005 .

[55]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[56]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[57]  Tobin J Marks,et al.  CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure. , 2005, Journal of the American Chemical Society.

[58]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[59]  Raj René Janssen,et al.  Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells , 2001 .

[60]  Jan C Hummelen,et al.  Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. , 2007, Organic letters.

[61]  Barry P Rand,et al.  4.2% efficient organic photovoltaic cells with low series resistances , 2004 .

[62]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[63]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[64]  P. Blom,et al.  Origin of the Reduced Fill Factor and Photocurrent in MDMO‐PPV:PCNEPV All‐Polymer Solar Cells , 2007 .

[65]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[66]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[67]  David S. Ginley,et al.  Transparent Conducting Oxides , 2000 .

[68]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[69]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[70]  Weimin Zhang,et al.  Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. , 2008, Journal of the American Chemical Society.

[71]  C. Deibel,et al.  Influence of charge carrier mobility on the performance of organic solar cells , 2008, 0806.2249.

[72]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[73]  C. R. Crowell,et al.  Photoelectric Determination of the Image Force Dielectric Constant For Hot Electrons in Schottky Barriers , 1964 .