A Spectral Element Method for Option Pricing Under Regime-Switching with Jumps

In this paper, we propose the spectral element method to price European, digital, butterfly, American, discrete and continuous barrier options in a Markovian jump-diffusion regime-switching economy. The spectral element method discretisation is considered for the approximation of the spatial derivatives in a system of partial integro-differential equations and is chosen because it possesses spectral accuracy such that highly accurate option prices can be obtained using a small number of grid discretisation nodes. Essentially, the spectral element method consists of splitting the computational domain into as many elements as needed and approximating the basis functions by high-order orthogonal polynomials within each element. In order to sustain the high-order convergence in time, we also use an exponential time integration scheme to solve the semi-discrete system. Our numerical examples support our error analysis and indicate that the spectral element method converges exponentially for the values and the hedging parameters of the regime-dependent options. Therefore, the proposed scheme provides a viable alternative to the finite difference or finite element methods which usually converge only algebraically.

[1]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[2]  Jingtang Ma,et al.  Convergence rates of trinomial tree methods for option pricing under regime-switching models , 2015, Appl. Math. Lett..

[3]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[4]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[5]  Hailiang Yang,et al.  Option pricing with regime switching by trinomial tree method , 2010, J. Comput. Appl. Math..

[6]  P. Wilmott,et al.  The Mathematics of Financial Derivatives: Contents , 1995 .

[7]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[8]  Younhee Lee Financial options pricing with regime-switching jump-diffusions , 2014, Comput. Math. Appl..

[9]  Guillaume Leduc,et al.  Convergence rate of regime-switching trees , 2017, J. Comput. Appl. Math..

[10]  Van Son Lai,et al.  Option pricing under regime-switching models: Novel approaches removing path-dependence , 2019 .

[11]  Muddun Bhuruth,et al.  High-order computational methods for option valuation under multifactor models , 2013, Eur. J. Oper. Res..

[12]  R. Liu,et al.  Regime-Switching Recombining Tree For Option Pricing , 2010 .

[13]  B. Kleefeld,et al.  Solving complex PDE systems for pricing American options with regime‐switching by efficient exponential time differencing schemes , 2013 .

[14]  Ali Foroush Bastani,et al.  A radial basis collocation method for pricing American options under regime-switching jump-diffusion models , 2013 .

[15]  Yongok Choi,et al.  A new approach to model regime switching , 2017 .

[17]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[18]  M. El-Azab,et al.  Legendre-Gauss-Lobatto Pseudo-spectral Method for One-Dimensional Advection-Diffusion Equation , 2015 .

[19]  Lili Ju,et al.  A fast compact exponential time differencing method for semilinear parabolic equations with Neumann boundary conditions , 2019, Appl. Math. Lett..

[20]  David A. Kopriva,et al.  A Spectral Element Framework for Option Pricing Under General Exponential Lévy Processes , 2013, J. Sci. Comput..

[21]  Athanasios A. Pantelous,et al.  A high order finite element scheme for pricing options under regime switching jump diffusion processes , 2016, J. Comput. Appl. Math..

[22]  D. Tangman,et al.  Exponential time integration and Chebychev discretisation schemes for fast pricing of options , 2008 .

[23]  Bong-Gyu Jang,et al.  Optimal Reinsurance and Asset Allocation under Regime Switching , 2015 .

[24]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[25]  Désiré Yannick Tangman,et al.  A high-order finite difference method for option valuation , 2017, Comput. Math. Appl..

[26]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[27]  Bong-Gyu Jang,et al.  Option pricing under regime switching: Integration over simplexes method , 2017 .

[28]  L. Overbeck,et al.  Option pricing in a regime switching stochastic volatility model , 2017, Statistics & Probability Letters.

[29]  Jun Fu,et al.  Portfolio optimization in a regime-switching market with derivatives , 2014, Eur. J. Oper. Res..

[30]  Bruno Welfert Generation of Pseudospectral Differentiation Matrices I , 1997 .

[31]  Cornelis W. Oosterlee,et al.  Numerical valuation of options with jumps in the underlying , 2005 .

[32]  Geraldine Tour,et al.  Option pricing under a Markov modulated model using a cubic B-spline collocation method , 2014, Int. J. Bus. Intell. Data Min..

[33]  S. Jacka,et al.  On the regularity of American options with regime-switching uncertainty , 2013, 1309.1404.

[34]  Phelim P. Boyle,et al.  Pricing exotic options under regime switching , 2007 .

[35]  Lijun Bo,et al.  Optimal investment of variance-swaps in jump-diffusion market with regime-switching , 2017 .

[36]  R. H. Liu,et al.  A lattice method for option pricing with two underlying assets in the regime-switching model , 2013, J. Comput. Appl. Math..

[37]  Vasant Naik,et al.  Option Valuation and Hedging Strategies with Jumps in the Volatility of Asset Returns , 1993 .

[38]  David A. Kopriva,et al.  A Spectral Element Method to Price European Options. I. Single Asset with and without Jump Diffusion , 2009, J. Sci. Comput..

[39]  Jari Toivanen,et al.  Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..

[40]  Sebastian Jaimungal,et al.  Fourier Space Time-Stepping for Option Pricing With Levy Models , 2007 .

[41]  Sonnan Chen,et al.  Pricing and hedging barrier options under a Markov-modulated double exponential jump diffusion-CIR model , 2017, International Review of Economics & Finance.

[42]  Tianyao Yue,et al.  Spectral Element Method for Pricing European Options and Their Greeks , 2012 .

[43]  L. Trefethen,et al.  Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals , 2007 .

[44]  Hailiang Yang,et al.  Pricing Asian Options and Equity-Indexed Annuities with Regime Switching by the Trinomial Tree Method , 2010 .

[45]  M. I. M. Wahab,et al.  A comparison of regime-switching temperature modeling approaches for applications in weather derivatives , 2014, Eur. J. Oper. Res..

[46]  Muddun Bhuruth,et al.  A high-order RBF-FD method for option pricing under regime-switching stochastic volatility models with jumps , 2019, J. Comput. Sci..

[47]  Guy Latouche,et al.  On barrier option pricing by Erlangization in a regime-switching model with jumps , 2020, J. Comput. Appl. Math..

[48]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[49]  Christoph Reisinger,et al.  On the Use of Policy Iteration as an Easy Way of Pricing American Options , 2010, SIAM J. Financial Math..

[50]  Granville Sewell,et al.  Numerical Schemes for Pricing Asian Options Under State-Dependent Regime-Switching Jump-Diffusion Models , 2015, Comput. Math. Appl..

[51]  Massimo Costabile,et al.  Option pricing under regime-switching jump-diffusion models , 2014, J. Comput. Appl. Math..

[52]  Abdul-Qayyum M. Khaliq,et al.  Solving complex PIDE systems for pricing American option under multi-state regime switching jump-diffusion model , 2018, Comput. Math. Appl..

[53]  Geraldine Tour,et al.  COS method for option pricing under a regime-switching model with time-changed Lévy processes , 2018 .

[54]  A. Ramponi FOURIER TRANSFORM METHODS FOR REGIME-SWITCHING JUMP-DIFFUSIONS AND THE PRICING OF FORWARD STARTING OPTIONS , 2011, 1105.4567.

[55]  Jie Shen,et al.  A New Spectral Element Method for Pricing European Options Under the Black–Scholes and Merton Jump Diffusion Models , 2011, J. Sci. Comput..

[56]  Wuming Zhu,et al.  A spectral element method to price single and multi-asset European options , 2008 .

[57]  Y. Huang,et al.  Methods for Pricing American Options under Regime Switching , 2011, SIAM J. Sci. Comput..

[58]  Tak Kuen Siu,et al.  Asset allocation under stochastic interest rate with regime switching , 2012 .

[59]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[60]  Matthew Willyard,et al.  Adaptive spectral element methods to price American options , 2011 .

[61]  Han Wang,et al.  Convergence rates of moving mesh methods for moving boundary partial integro-differential equations from regime-switching jump-diffusion Asian option pricing , 2020, J. Comput. Appl. Math..