Proteomic distinction of renal oncocytomas and chromophobe renal cell carcinomas

[1]  O. Schilling,et al.  Proteomic Characterization of Prostate Cancer to Distinguish Nonmetastasizing and Metastasizing Primary Tumors and Lymph Node Metastases , 2017, Neoplasia.

[2]  O. Schilling,et al.  Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease , 2017, Oncotarget.

[3]  C. Lindskog,et al.  A pathology atlas of the human cancer transcriptome , 2017, Science.

[4]  P. Pavlidis,et al.  Can we predict protein from mRNA levels? , 2017, Nature.

[5]  R. Aebersold,et al.  On the Dependency of Cellular Protein Levels on mRNA Abundance , 2016, Cell.

[6]  Chris Sander,et al.  Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma. , 2016, Cell reports.

[7]  Anne Bernard,et al.  A systematic review and meta-analysis of immunohistochemical biomarkers that differentiate chromophobe renal cell carcinoma from renal oncocytoma , 2016, Journal of Clinical Pathology.

[8]  C. Peters,et al.  Impact of cathepsin B on the interstitial fluid proteome of murine breast cancers. , 2016, Biochimie.

[9]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2016, Nucleic Acids Res..

[10]  Jonathan I. Epstein,et al.  WHO Classification of of Tumours of the Urinary System and Male Genital Organs , 2016 .

[11]  Chang S. Chan,et al.  The Genomic Landscape of Renal Oncocytoma Identifies a Metabolic Barrier to Tumorigenesis , 2015, Cell reports.

[12]  O. Schilling,et al.  Quantitative proteomic analysis of formalin–fixed, paraffin–embedded clear cell renal cell carcinoma tissue using stable isotopic dimethylation of primary amines , 2015, BMC Genomics.

[13]  Peter Hoffmann,et al.  Proteomic developments in the analysis of formalin-fixed tissue. , 2015, Biochimica et biophysica acta.

[14]  T. Reinheckel,et al.  Lysosomal protein turnover contributes to the acquisition of TGFβ-1 induced invasive properties of mammary cancer cells , 2015, Molecular Cancer.

[15]  H. Moch,et al.  A clearer view of the molecular complexity of clear cell renal cell carcinoma. , 2015, Annual review of pathology.

[16]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[17]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[18]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[19]  O. Schilling,et al.  Impact of routinely employed procedures for tissue processing on the proteomic analysis of formalin‐fixed paraffin‐embedded tissue , 2014, Proteomics. Clinical applications.

[20]  Lawrence A. Donehower,et al.  The somatic genomic landscape of chromophobe renal cell carcinoma. , 2014, Cancer cell.

[21]  B. Delahunt,et al.  Best Practices Recommendations in the Application of Immunohistochemistry in the Kidney Tumors: Report From the International Society of Urologic Pathology Consensus Conference , 2014, The American journal of surgical pathology.

[22]  B. Delahunt,et al.  Best Practices Recommendations in the Application of Immunohistochemistry in Urologic Pathology: Report From the International Society of Urological Pathology Consensus Conference , 2014, The American journal of surgical pathology.

[23]  Martin L. Biniossek,et al.  Secretome and degradome profiling shows that Kallikrein‐related peptidases 4, 5, 6, and 7 induce TGFβ‐1 signaling in ovarian cancer cells , 2013, Molecular oncology.

[24]  T. Reinheckel,et al.  Double deficiency of cathepsins B and L results in massive secretome alterations and suggests a degradative cathepsin-MMP axis , 2013, Cellular and Molecular Life Sciences.

[25]  M. Yusenko Molecular pathology of renal oncocytoma: A review , 2010, International journal of urology : official journal of the Japanese Urological Association.

[26]  M. Mann,et al.  Super-SILAC mix for quantitative proteomics of human tumor tissue , 2010, Nature Methods.

[27]  Börje Ljungberg,et al.  High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas , 2009, BMC Cancer.

[28]  H. Moch,et al.  Chromophobe Renal Cell Carcinoma: Histomorphologic Characteristics and Evaluation of Conventional Pathologic Prognostic Parameters in 145 Cases , 2008, The American journal of surgical pathology.

[29]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[30]  Albert J R Heck,et al.  Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates , 2008, Proteomics.

[31]  Karl J. Dykema,et al.  Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response , 2008, PLoS genetics.

[32]  J. Zippel Zur Kenntnis der Onkocyten , 1941, Virchows Archiv für pathologische Anatomie und Physiologie und für klinische Medizin.

[33]  Fabien Campagne,et al.  Gene Expression Profiling Separates Chromophobe Renal Cell Carcinoma from Oncocytoma and Identifies Vesicular Transport and Cell Junction Proteins as Differentially Expressed Genes , 2006, Clinical Cancer Research.

[34]  M. Gulluoglu,et al.  Can renal oncocytoma be differentiated from its renal mimics? The utility of anti-mitochondrial, caveolin 1, CD63 and cytokeratin 14 antibodies in the differential diagnosis , 2005, Virchows Archiv.

[35]  Marie Joseph,et al.  Gene Signatures of Progression and Metastasis in Renal Cell Cancer , 2005, Clinical Cancer Research.

[36]  I. Sesterhenn,et al.  World health organization classifications of tumours. pathology and genetics of tumours of the urinary system and male genital organs , 2005 .

[37]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[38]  M. Terris,et al.  Gene expression patterns in renal cell carcinoma assessed by complementary DNA microarray. , 2003, The American journal of pathology.

[39]  S. Tickoo,et al.  Ultrastructural Observations on Mitochondria and Microvesicles in Renal Oncocytoma, Chromophobe Renal Cell Carcinoma, and Eosinophilic Variant of Conventional (Clear Cell) Renal Cell Carcinoma , 2000, The American journal of surgical pathology.

[40]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[41]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[42]  MichaelE. Klein,et al.  Proximal tubular adenomas of kidney with so‐called oncocytic features. A clinicopathologic study of 13 cases of a rarely reported neoplasm , 1976, Cancer.

[43]  H. Bartsch,et al.  International Agency for Research on Cancer. , 1969, WHO chronicle.