The statistical mechanics of Twitter communities

We build models for the distribution of social states in Twitter communities. States can be defined by the participation vs silence of individuals in conversations that surround key words, and we approximate the joint distribution of these binary variables using the maximum entropy principle, finding the least structured models that match the mean probability of individuals tweeting and their pairwise correlations. These models provide very accurate, quantitative descriptions of higher order structure in these social networks. The parameters of these models seem poised close to critical surfaces in the space of possible models, and we observe scaling behavior of the data under coarse-graining. These results suggest that simple models, grounded in statistical physics, may provide a useful point of view on the larger data sets now emerging from complex social systems.

[1]  S. Galam,et al.  Sociophysics: A new approach of sociological collective behaviour. I. mean‐behaviour description of a strike , 1982, 2211.07041.

[2]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[3]  R. Zecchina,et al.  Inverse statistical problems: from the inverse Ising problem to data science , 2017, 1702.01522.

[4]  Jon Atwell,et al.  Agent-Based Models in Empirical Social Research , 2015, Sociological methods & research.

[5]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[7]  Ulisse Ferrari Learning maximum entropy models from finite-size data sets: A fast data-driven algorithm allows sampling from the posterior distribution. , 2016, Physical review. E.

[8]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[9]  S. Emery,et al.  A cross-sectional examination of marketing of electronic cigarettes on Twitter , 2014, Tobacco Control.

[10]  W. Bialek,et al.  Statistical thermodynamics of natural images. , 2008, Physical review letters.

[11]  Edward D. Lee Partisan Intuition Belies Strong, Institutional Consensus and Wide Zipf’s Law for Voting Blocs in US Supreme Court , 2018, Journal of Statistical Physics.

[12]  Serena Bradde,et al.  PCA Meets RG , 2016, Journal of Statistical Physics.

[13]  B. Derrida,et al.  of Statistical Mechanics : Theory and Experiment Non-equilibrium steady states : fluctuations and large deviations of the density and of the current , 2007 .

[14]  Petter Holme,et al.  Modern temporal network theory: a colloquium , 2015, The European Physical Journal B.

[15]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[16]  Carreño Carreño,et al.  Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .

[17]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[18]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[19]  W. Bialek,et al.  Maximum entropy models for antibody diversity , 2009, Proceedings of the National Academy of Sciences.

[20]  R. Sawyer,et al.  Emergence in Sociology: Contemporary Philosophy of Mind and Some Implications for Sociological Theory1 , 2001, American Journal of Sociology.

[21]  W. Bialek,et al.  Statistical mechanics for natural flocks of birds , 2011, Proceedings of the National Academy of Sciences.

[22]  T. R. Kirkpatrick,et al.  Light scattering by a fluid in a nonequilibrium steady state. II. Large gradients , 1982 .

[23]  William Bialek,et al.  Statistical Mechanics of the US Supreme Court , 2013, Journal of Statistical Physics.

[24]  Itai Cohen,et al.  Collective motion of humans in mosh and circle pits at heavy metal concerts. , 2013, Physical review letters.

[25]  W. Bialek,et al.  Are Biological Systems Poised at Criticality? , 2010, 1012.2242.

[26]  Per Bak,et al.  How Nature Works , 1996 .

[27]  I. Mastromatteo,et al.  On the criticality of inferred models , 2011, 1102.1624.

[28]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[29]  W. Bialek,et al.  Social interactions dominate speed control in poising natural flocks near criticality , 2013, Proceedings of the National Academy of Sciences.

[30]  M. Fisher Renormalization group theory: Its basis and formulation in statistical physics , 1998 .

[31]  Christopher M. Danforth,et al.  Divergent discourse between protests and counter-protests: #BlackLivesMatter and #AllLivesMatter , 2016, PloS one.

[32]  Renaud Lambiotte,et al.  Local Variation of Hashtag Spike Trains and Popularity in Twitter , 2015, PloS one.

[33]  J. Sethna Statistical Mechanics: Entropy, Order Parameters, and Complexity , 2021 .

[34]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[35]  Dean Korosak,et al.  Collective behaviour of social bots is encoded in their temporal Twitter activity , 2017, Big Data.

[36]  Georgina Kennedy,et al.  Characterizing Twitter Discussions About HPV Vaccines Using Topic Modeling and Community Detection , 2016, Journal of medical Internet research.

[37]  A. Vulpiani,et al.  On the relevance of the maximum entropy principle in non-equilibrium statistical mechanics , 2017 .

[38]  C. Landim,et al.  Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States , 2001, cond-mat/0108040.

[39]  Michael J. Berry,et al.  Searching for Collective Behavior in a Large Network of Sensory Neurons , 2013, PLoS Comput. Biol..

[40]  M. Brodbeck Methodological Individualisms: Definition and Reduction , 1958, Philosophy of Science.

[41]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[42]  Michael J. Berry,et al.  Thermodynamics and signatures of criticality in a network of neurons , 2015, Proceedings of the National Academy of Sciences.

[43]  H. Hinrichsen,et al.  Critical coarsening without surface tension: the universality class of the voter model. , 2001, Physical review letters.

[44]  Peter E. Latham,et al.  Zipf’s Law Arises Naturally When There Are Underlying, Unobserved Variables , 2016, PLoS Comput. Biol..

[45]  Elihu Katz,et al.  Notes on a Natural History of Fads , 1957, American Journal of Sociology.

[46]  Thomas C. Schelling,et al.  Dynamic models of segregation , 1971 .

[47]  Thomas A. Hopf,et al.  Protein 3D Structure Computed from Evolutionary Sequence Variation , 2011, PloS one.

[48]  David J Schwab,et al.  Zipf's law and criticality in multivariate data without fine-tuning. , 2013, Physical review letters.

[49]  Kathleen M. Carley,et al.  Crowd sourcing disaster management: The complex nature of Twitter usage in Padang Indonesia , 2016 .

[50]  Paul A. Longley,et al.  The geography of Twitter topics in London , 2016, Comput. Environ. Urban Syst..

[51]  T. Hwa,et al.  Identification of direct residue contacts in protein–protein interaction by message passing , 2009, Proceedings of the National Academy of Sciences.

[52]  Bryan C. Daniels,et al.  Control of finite critical behaviour in a small-scale social system , 2016, Nature Communications.

[53]  K. Wilson Problems in Physics with many Scales of Length , 1979 .

[54]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[55]  Mary Anne Kennan,et al.  The State of the Nation: A Snapshot of Australian Institutional Repositories , 2009, First Monday.