A tau-conjecture for Newton polygons

One can associate to any bivariate polynomial $$P(X,Y)$$P(X,Y) its Newton polygon. This is the convex hull of the points $$(i,j)$$(i,j) such that the monomial $$X^i Y^j$$XiYj appears in $$P$$P with a nonzero coefficient. We conjecture that when $$P$$P is expressed as a sum of products of sparse polynomials, the number of edges of its Newton polygon is polynomially bounded in the size of such an expression. We show that this so-called $$\tau $$τ-conjecture for Newton polygons, even in a weak form, implies that the permanent polynomial is not computable by polynomial-size arithmetic circuits. We make the same observation for a weak version of an earlier real $$\tau $$τ-conjecture. Finally, we make some progress toward the $$\tau $$τ-conjecture for Newton polygons using recent results from combinatorial geometry.

[1]  V. Vinay,et al.  Arithmetic Circuits: A Chasm at Depth Four , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[2]  Allan Borodin,et al.  On the Number of Additions to Compute Specific Polynomials , 1976, SIAM J. Comput..

[3]  Neeraj Kayal,et al.  Arithmetic Circuits: A Chasm at Depth Three , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[4]  Pascal Koiran Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..

[5]  Friedrich Eisenbrand,et al.  Convexly Independent Subsets of the Minkowski Sum of Planar Point Sets , 2008, Electron. J. Comb..

[6]  Peter Bürgisser On Defining Integers And Proving Arithmetic Circuit Lower Bounds , 2009, computational complexity.

[7]  I. Fischer Sums of like powers of multivariate linear forms , 1994 .

[8]  Felipe Cucker,et al.  Algebraic Settings for the Problem “P ≠ NP?” , 1998 .

[9]  B. Sturmfels Polynomial Equations and Convex Polytopes , 1998 .

[10]  Avi Wigderson,et al.  Partial Derivatives in Arithmetic Complexity and Beyond , 2011, Found. Trends Theor. Comput. Sci..

[11]  Neeraj Kayal An exponential lower bound for the sum of powers of bounded degree polynomials , 2012, Electron. Colloquium Comput. Complex..

[12]  Peter Bürgisser,et al.  Completeness and Reduction in Algebraic Complexity Theory , 2000, Algorithms and computation in mathematics.

[13]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[14]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[15]  A. Wigderson,et al.  Partial Derivatives in Arithmetic Complexity and Beyond (Foundations and Trends(R) in Theoretical Computer Science) , 2011 .

[16]  S. Smale Mathematical problems for the next century , 1998 .

[17]  M. Shub,et al.  On The Intractability Of Hilbert's Nullstellensatz And An Algebraic Version Of . . , 1995 .

[18]  Uriel G. Rothblum,et al.  The convex dimension of a graph , 2007, Discret. Appl. Math..

[19]  Pascal Koiran,et al.  Shallow circuits with high-powered inputs , 2010, ICS.

[20]  Pascal Koiran,et al.  Arithmetic circuits: The chasm at depth four gets wider , 2010, Theor. Comput. Sci..

[21]  Konrad J. Swanepoel,et al.  Large Convexly Independent Subsets of Minkowski Sums , 2010, Electron. J. Comb..

[22]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[23]  Pavel Hrubes On the Real τ-Conjecture and the Distribution of Complex Roots , 2013, Theory Comput..

[24]  Selmer Bringsjord,et al.  P=np , 2004, ArXiv.

[25]  Sébastien Tavenas,et al.  Improved bounds for reduction to depth 4 and depth 3 , 2013, Inf. Comput..

[26]  Sébastien Tavenas,et al.  Bornes inférieures et supérieures dans les circuits arithmétiques , 2014 .

[27]  Csaba D. Tóth,et al.  A Tight Lower Bound for Convexly Independent Subsets of the Minkowski Sums of Planar Point Sets , 2010, Electron. J. Comb..

[28]  Shuhong Gao Absolute Irreducibility of Polynomials via Newton Polytopes , 2001 .