A tau-conjecture for Newton polygons
暂无分享,去创建一个
Stéphan Thomassé | Pascal Koiran | Sébastien Tavenas | Natacha Portier | P. Koiran | Stéphan Thomassé | Sébastien Tavenas | Natacha Portier
[1] V. Vinay,et al. Arithmetic Circuits: A Chasm at Depth Four , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[2] Allan Borodin,et al. On the Number of Additions to Compute Specific Polynomials , 1976, SIAM J. Comput..
[3] Neeraj Kayal,et al. Arithmetic Circuits: A Chasm at Depth Three , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[4] Pascal Koiran. Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..
[5] Friedrich Eisenbrand,et al. Convexly Independent Subsets of the Minkowski Sum of Planar Point Sets , 2008, Electron. J. Comb..
[6] Peter Bürgisser. On Defining Integers And Proving Arithmetic Circuit Lower Bounds , 2009, computational complexity.
[7] I. Fischer. Sums of like powers of multivariate linear forms , 1994 .
[8] Felipe Cucker,et al. Algebraic Settings for the Problem “P ≠ NP?” , 1998 .
[9] B. Sturmfels. Polynomial Equations and Convex Polytopes , 1998 .
[10] Avi Wigderson,et al. Partial Derivatives in Arithmetic Complexity and Beyond , 2011, Found. Trends Theor. Comput. Sci..
[11] Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials , 2012, Electron. Colloquium Comput. Complex..
[12] Peter Bürgisser,et al. Completeness and Reduction in Algebraic Complexity Theory , 2000, Algorithms and computation in mathematics.
[13] S. Smale,et al. On a theory of computation and complexity over the real numbers; np-completeness , 1989 .
[14] Leslie G. Valiant,et al. Completeness classes in algebra , 1979, STOC.
[15] A. Wigderson,et al. Partial Derivatives in Arithmetic Complexity and Beyond (Foundations and Trends(R) in Theoretical Computer Science) , 2011 .
[16] S. Smale. Mathematical problems for the next century , 1998 .
[17] M. Shub,et al. On The Intractability Of Hilbert's Nullstellensatz And An Algebraic Version Of . . , 1995 .
[18] Uriel G. Rothblum,et al. The convex dimension of a graph , 2007, Discret. Appl. Math..
[19] Pascal Koiran,et al. Shallow circuits with high-powered inputs , 2010, ICS.
[20] Pascal Koiran,et al. Arithmetic circuits: The chasm at depth four gets wider , 2010, Theor. Comput. Sci..
[21] Konrad J. Swanepoel,et al. Large Convexly Independent Subsets of Minkowski Sums , 2010, Electron. J. Comb..
[22] Amir Yehudayoff,et al. Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..
[23] Pavel Hrubes. On the Real τ-Conjecture and the Distribution of Complex Roots , 2013, Theory Comput..
[24] Selmer Bringsjord,et al. P=np , 2004, ArXiv.
[25] Sébastien Tavenas,et al. Improved bounds for reduction to depth 4 and depth 3 , 2013, Inf. Comput..
[26] Sébastien Tavenas,et al. Bornes inférieures et supérieures dans les circuits arithmétiques , 2014 .
[27] Csaba D. Tóth,et al. A Tight Lower Bound for Convexly Independent Subsets of the Minkowski Sums of Planar Point Sets , 2010, Electron. J. Comb..
[28] Shuhong Gao. Absolute Irreducibility of Polynomials via Newton Polytopes , 2001 .