Adaptive estimation of eigensubspace and tracking the directions of arrival

Abstract In this paper, we present an adaptive method to estimate the eigensubspace and directions-of-arrival (DOAs) of multiple narrowband plane waves. We first develop, for the arbitrary array and asymptotic case, an approximate complex Newton-update formula for recursively seeking the eigenvector corresponding to the minimum eigenvalue of the data covariance matrix of the underlying complex, stationary signal scenario. The development of the algorithm involves complex differentiation and use of exact gradient and a refined approximation to the Hessian of the cost function in the Newton-update formula derived by Abatzaglou et al. (1991). For seeking the complete noise subspace, we combine this algorithm with the matrix level inflation technique suggested by Mathew et al. (1995). Next, we consider nonstationary signal sources and present the adaptive procedure for tracking the noise subspace and directions of arrival of the moving sources. Tracking of angles of arrival is accomplished by computing the minimum-norm polynomial coefficients and deriving an elegant relationship between the changes in the values of the coefficients and the values of the roots of the polynomial on a snapshot basis. Computer simulations are included to demonstrate the quality of estimated noise subspace and accuracy in the estimates of DOAs. Results are compared with those obtained using some of the existing methods for adaptive subspace estimation (Yang and Kaveh, 1988; Yu, 1991) and tracking of angles (Yu, 1991).

[1]  Ronald D. DeGroat,et al.  Noniterative subspace tracking , 1992, IEEE Trans. Signal Process..

[2]  Jerry M. Mendel,et al.  The constrained total least squares technique and its applications to harmonic superresolution , 1991, IEEE Trans. Signal Process..

[3]  K.-B. Yu High-resolution multiple target angle tracking , 1991, IEEE Aerospace and Electronic Systems Magazine.

[4]  Frédéric Barbaresco,et al.  ANALYSE SPECTRALE PAR DECOMPOSITION RECURSIVE EN SOUS-ESPACES PROPRES VIA LES COEFFICIENTS DE REFLEXION , 1997 .

[5]  Kai-Bor Yu,et al.  Recursive updating the eigenvalue decomposition of a covariance matrix , 1991, IEEE Trans. Signal Process..

[6]  B. Widrow,et al.  The complex LMS algorithm , 1975, Proceedings of the IEEE.

[7]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[8]  Jean Pierre Delmas Performances analysis of parameterized adaptive eigenspace algorithms , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[9]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[10]  Jean Pierre Delmas,et al.  Asymptotic performance analysis of subspace adaptive algorithms introduced in the neural network literature , 1998, IEEE Trans. Signal Process..

[11]  Tapan K. Sarkar,et al.  Adaptive spectral estimation by the conjugate gradient method , 1986, IEEE Trans. Acoust. Speech Signal Process..

[12]  M. Simaan,et al.  IN ThE PRESENCE OF WHITE NOISE , 1985 .

[13]  Soura Dasgupta,et al.  Adaptive estimation of eigensubspace , 1995, IEEE Trans. Signal Process..

[14]  R. D. DeGroat,et al.  Efficient, numerically stabilized rank-one eigenstructure updating [signal processing] , 1990, IEEE Trans. Acoust. Speech Signal Process..

[15]  Phillip A. Regalia,et al.  An adaptive unit norm filter with applications to signal analysis and Karhunen-Loeve transformations , 1990 .

[16]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[17]  George Mathew,et al.  A quasi-Newton adaptive algorithm for generalized symmetric eigenvalue problem , 1996, IEEE Trans. Signal Process..

[18]  Pierre Priouret,et al.  Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.

[19]  T. Kailath,et al.  Least squares type algorithm for adaptive implementation of Pisarenko's harmonic retrieval method , 1982 .

[20]  L. Zhang,et al.  Multiple target angle tracking using sensor array outputs , 1993 .

[21]  B. A. D. H. Brandwood A complex gradient operator and its applica-tion in adaptive array theory , 1983 .

[22]  Jerry M. Mendel,et al.  Parallel Structured Networks for Solving a Wide Variety of Matrix Algebra Problems , 1992, J. Parallel Distributed Comput..

[23]  Frédéric Barbaresco Recursive eigendecomposition via autoregressive analysis and ago-antagonistic regularization , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[24]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[25]  T. Sarkar,et al.  Application of the conjugate gradient and steepest descent for computing the eigenvalues of an operator , 1989 .

[26]  K. Lo,et al.  An improved multiple target angle tracking algorithm , 1992 .

[27]  G. W. Stewart,et al.  An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..

[28]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[29]  Marwan A. Simaan,et al.  An efficient algorithm for tracking the angles of arrival of moving targets , 1991, IEEE Trans. Signal Process..

[30]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[31]  B. Zhou,et al.  Tracking the direction of arrival of multiple moving targets , 1994, IEEE Trans. Signal Process..

[32]  K. Sharman,et al.  Eigenfilter approaches to adaptive array processing , 1983 .

[33]  Ken Sharman,et al.  Adaptive algorithms for estimating the complete covariance eigenstructure , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[34]  R. Kumaresan,et al.  Estimating the Angles of Arrival of Multiple Plane Waves , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[35]  Donald W. Tufts,et al.  Simple, effective computation of principal eigenvectors and their eigenvalues and application to high-resolution estimation of frequencies , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[36]  Jar-Ferr Yang,et al.  Adaptive eigensubspace algorithms for direction or frequency estimation and tracking , 1988, IEEE Trans. Acoust. Speech Signal Process..

[37]  Petre Stoica,et al.  MUSIC, maximum likelihood and Cramer-Rao bound , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[38]  Christian H. Bischof,et al.  On updating signal subspaces , 1992, IEEE Trans. Signal Process..

[39]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[40]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[41]  Gilles Pagès,et al.  CONVERGENCE OF STOCHASTIC ALGORITHMS: FROM THE KUSHNER-CLARK THEOREM TO THE LYAPOUNOV FUNCTIONAL METHOD , 1996 .

[42]  Bede Liu,et al.  Rotational search methods for adaptive Pisarenko harmonic retrieval , 1986, IEEE Trans. Acoust. Speech Signal Process..

[43]  Alexander M. Haimovich,et al.  An eigenanalysis interference canceler , 1991, IEEE Trans. Signal Process..

[44]  Arthur Jay Barabell,et al.  Improving the resolution performance of eigenstructure-based direction-finding algorithms , 1983, ICASSP.

[45]  Norman L. Owsley,et al.  Adaptive data orthogonalization , 1978, ICASSP.