Advanced laboratory techniques characterising solids, fluids and pores in shales

[1]  Liu Yang,et al.  Integrated assessment of thermal maturity of the Upper Ordovician–Lower Silurian Wufeng–Longmaxi shale in Sichuan Basin, China , 2019, Marine and Petroleum Geology.

[2]  M. Saunders,et al.  Organic matter network in post-mature Marcellus Shale: Effects on petrophysical properties , 2018, AAPG Bulletin.

[3]  Brett J. Valentine,et al.  High microscale variability in Raman thermal maturity estimates from shale organic matter , 2018, International Journal of Coal Geology.

[4]  P. Hackley,et al.  Application of Raman Spectroscopy as Thermal Maturity Probe in Shale Petroleum Systems: Insights from Natural and Artificial Maturation Series , 2018, Energy & Fuels.

[5]  I. Jarvis,et al.  Assessing low-maturity organic matter in shales using Raman spectroscopy: Effects of sample preparation and operating procedure , 2018 .

[6]  E. Javaux,et al.  Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia) , 2018 .

[7]  Zhongsheng Li,et al.  RaMM (Raman maturity method) study of samples used in an interlaboratory exercise on a standard test method for determination of vitrinite reflectance on dispersed organic matter in rocks , 2018 .

[8]  G. Cusatis,et al.  Anisotropic elastic, strength, and fracture properties of Marcellus shale , 2017, International Journal of Rock Mechanics and Mining Sciences.

[9]  B. Pejcic,et al.  The Effect of Pressure and Temperature on Mid-Infrared Sensing of Dissolved Hydrocarbons in Water. , 2017, Analytical chemistry.

[10]  L. Suwal,et al.  Deformation and Fabric in Compacted Clay Soils , 2017, 1709.03195.

[11]  D. Dewhurst,et al.  Petrophysical characterization at the extremes and across three continents: contrasting examples from Utica, Marcellus, Longmaxi and Roseneath-Murteree resource shales , 2017 .

[12]  Lizhi Xiao,et al.  Magic Echo for Nuclear Magnetic Resonance Characterization of Shales , 2017 .

[13]  M. Prasad,et al.  Low-Field NMR Spectrometry of Chalk and Argillaceous Sandstones: Rock-Fluid Affinity Assessed from T 1 / T 2 Ratio , 2017 .

[14]  S. Corrado,et al.  Diagenetic thermal evolution of organic matter by Raman spectroscopy , 2017 .

[15]  Khalid L. Alsamadony,et al.  Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation , 2017 .

[16]  M. Lebedev,et al.  Compaction of quartz-kaolinite mixtures: The influence of the pore fluid composition on the development of their microstructure and elastic anisotropy , 2016 .

[17]  Chao Yang,et al.  Classification and the developmental regularity of organic-associated pores (OAP) through a comparative study of marine, transitional, and terrestrial shales in China , 2016 .

[18]  B. Pejcic,et al.  Development of far-infrared attenuated total reflectance spectroscopy for the mineralogical analysis of shales , 2016 .

[19]  H. Singh A critical review of water uptake by shales , 2016 .

[20]  Ravinath Kausik,et al.  High- and Low-Field NMR Relaxometry and Diffusometry of the Bakken Petroleum System , 2016 .

[21]  B. Clennell,et al.  Dielectric Permittivity and Anisotropy of Intact Multi-Saturated Organic Shales , 2016 .

[22]  Mohamed Mehana,et al.  Shale characteristics impact on Nuclear Magnetic Resonance (NMR) fluid typing methods and correlations , 2016 .

[23]  A. S. Mumm,et al.  Microscale organic maturity determination of graptolites using Raman spectroscopy , 2016 .

[24]  Feng Yang,et al.  Pore structure of Cambrian shales from the Sichuan Basin in China and implications to gas storage , 2016 .

[25]  Rui Yang,et al.  Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry , 2016 .

[26]  Maria Mastalerz,et al.  Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review , 2015, International journal of molecular sciences.

[27]  M. Sengupta,et al.  Modeling anisotropic elasticity in an unconventional reservoir , 2015 .

[28]  Martin J. Kennedy,et al.  Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter , 2015 .

[29]  Zhongsheng Li,et al.  A RaMM study of thermal maturity of dispersed organic matter in marine source rocks , 2015 .

[30]  Marina Pervukhina,et al.  Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal , 2015 .

[31]  Richard E. Lewis,et al.  NMR Relaxometry in Shale and Implications for Logging , 2015 .

[32]  J. Birdwell,et al.  Detailed Description of Oil Shale Organic and Mineralogical Heterogeneity via Fourier Transform Infrared Microscopy , 2015 .

[33]  C. Marshall,et al.  Vibrational spectroscopy of fossils , 2015 .

[34]  C. Sayers,et al.  Sensitivity of the elastic anisotropy and seismic reflection amplitude of the Eagle Ford Shale to the presence of kerogen , 2015 .

[35]  A. Schimmelmann,et al.  Heterogeneity of shale documented by micro‐FTIR and image analysis , 2014, Journal of microscopy.

[36]  B. Pejcic,et al.  Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems , 2014, Scientific Reports.

[37]  G. Gannaway NMR Investigation of Pore Structure in Gas Shales , 2014 .

[38]  M. Josh Dielectric Permittivity: A Petrophysical Parameter for Shales , 2014 .

[39]  X. Xiao,et al.  Thermal maturity evaluation from inertinites by Raman spectroscopy: The ‘RaMM’ technique , 2014 .

[40]  Chun Liu,et al.  The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM–FIB and image processing: An example from the lower Silurian Longmaxi Shale, upper Yangtze region, China , 2014 .

[41]  J. Rouzaud,et al.  Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation , 2014 .

[42]  K. Washburn Relaxation mechanisms and shales , 2014 .

[43]  H. Mori,et al.  A new approach to develop the Raman carbonaceous material geothermometer for low‐grade metamorphism using peak width , 2014 .

[44]  A. Schimmelmann,et al.  Quantitative analysis of shales by KBr-FTIR and micro-FTIR , 2014 .

[45]  Justin E. Birdwell,et al.  Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties , 2013 .

[46]  A. Schimmelmann,et al.  Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion , 2013 .

[47]  J. Birdwell,et al.  Updated methodology for nuclear magnetic resonance characterization of shales. , 2013, Journal of magnetic resonance.

[48]  Richard E. Lewis,et al.  NMR T2 Distributions in the Eagle Ford Shale: Reflections on Pore Size , 2013 .

[49]  X. Xiao,et al.  Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications , 2013 .

[50]  M. D. Rudnicki,et al.  Organic matter–hosted pore system, Marcellus Formation (Devonian), Pennsylvania , 2013 .

[51]  A. Revil,et al.  Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1GHz , 2013, Water resources research.

[52]  S. Palayangoda,et al.  An ATR-FTIR procedure for quantitative analysis of mineral constituents and kerogen in oil shale , 2012 .

[53]  Erik H. Saenger,et al.  Frequency-dependent seismic attenuation in shales: experimental results and theoretical analysis , 2012 .

[54]  M. Curtis,et al.  Development of organic porosity in the Woodford Shale with increasing thermal maturity , 2012 .

[55]  János Urai,et al.  BIB-SEM study of the pore space morphology in early mature Posidonia Shale from the Hils area, Germany , 2012 .

[56]  Paul C. Hackley,et al.  The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom , 2012 .

[57]  B. Horsfield,et al.  Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin) , 2012 .

[58]  Mark L. Rivers,et al.  An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks , 2012 .

[59]  D. Dewhurst,et al.  Laboratory characterisation of shale properties , 2012 .

[60]  Stephen C. Ruppel,et al.  Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores , 2012 .

[61]  R. Marc Bustin,et al.  Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units , 2012 .

[62]  B. Horsfield,et al.  Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany) , 2012 .

[63]  R. Slatt,et al.  Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks , 2011 .

[64]  A. Revil,et al.  Salinity dependence of spectral induced polarization in sands and sandstones , 2011 .

[65]  R. Morga Micro-Raman spectroscopy of carbonized semifusinite and fusinite , 2011 .

[66]  D. J. Bergman,et al.  Nuclear Magnetic Resonance: Petrophysical and Logging Applications , 2011 .

[67]  H. Wenk,et al.  Texture and anisotropy analysis of Qusaiba shales , 2011 .

[68]  R. Loucks,et al.  Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale , 2009 .

[69]  V. Luzin,et al.  The Strain-Scanning Diffractometer Kowari , 2009 .

[70]  J. Robinson,et al.  Dielectric properties of Jordanian oil shales , 2009 .

[71]  János Urai,et al.  Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations , 2009 .

[72]  S. Hillier,et al.  Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A) , 2008 .

[73]  L. R. Van Loon,et al.  Preferred orientations and anisotropy in shales: Callovo-Oxfordian shale (France) and Opalinus Clay (Switzerland) , 2008 .

[74]  J. Clavaud Intrinsic Electrical Anisotropy of Shale: The Effect of Compaction , 2008 .

[75]  Jan Środoń,et al.  Diagenetic reorientation of phyllosilicate minerals in Paleogene mudstones of the Podhale Basin, southern Poland , 2008 .

[76]  H. Wenk,et al.  Preferred orientation and elastic anisotropy in shales , 2007 .

[77]  G. Lloyd,et al.  Lattice preferred orientation and seismic anisotropy in sedimentary rocks , 2006 .

[78]  D. Mccarty,et al.  Influence of Mechanical Compaction and Clay Mineral Diagenesis on the Microfabric and Pore-Scale Properties of Deep-Water Gulf of Mexico Mudstones , 2006 .

[79]  F. Awaja,et al.  The prediction of clay contents in oil shale using DRIFTS and TGA data facilitated by multivariate calibration , 2006 .

[80]  Jim Underschultz,et al.  Multi-disciplinary approach to fault and top seal appraisal; Pyrenees–Macedon oil and gas fields, Exmouth Sub-basin, Australian Northwest Shelf , 2006 .

[81]  M. Brandon,et al.  Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece [rapid communication] , 2005 .

[82]  J. Rouzaud,et al.  Maturation grade of coals as revealed by Raman spectroscopy: progress and problems. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[83]  Massimo Mattei,et al.  The origin of tectonic lineation in extensional basins: Combined neutron texture and magnetic analyses on ''undeformed'' clays [rapid communication] , 2005 .

[84]  A. Tsuchiyama,et al.  Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation. , 2004, Journal of contaminant hydrology.

[85]  B. Stuart Infrared Spectroscopy , 2004, Analytical Techniques in Forensic Science.

[86]  Jean-Noël Rouzaud,et al.  On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[87]  D. Dewhurst,et al.  Microstructural and petrophysical characterization of Muderong Shale: application to top seal risking , 2002, Petroleum Geoscience.

[88]  J. Rouzaud,et al.  Raman spectra of carbonaceous material in metasediments: a new geothermometer , 2002 .

[89]  S. Kelemen,et al.  Maturity trends in Raman spectra from kerogen and coal , 2001 .

[90]  Ender Okandan,et al.  Adsorption and gas transport in coal microstructure: investigation and evaluation by quantitative X-ray CT imaging , 2001 .

[91]  D. Dewhurst,et al.  Influence of clay fraction on pore‐scale properties and hydraulic conductivity of experimentally compacted mudstones , 1999 .

[92]  Ben A. van der Pluijm,et al.  Preferred Orientation of Phyllosilicates in Gulf Coast Mudstones and Relation to the Smectite-Illite Transition , 1999 .

[93]  U. F. Kocks,et al.  Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties , 1998 .

[94]  Andrew C. Aplin,et al.  Compaction‐driven evolution of porosity and permeability in natural mudstones: An experimental study , 1998 .

[95]  H. Riesemeier,et al.  Rock porosity determination by combination of X-ray computerized tomography with mercury porosimetry , 1997 .

[96]  S. E. Prasad,et al.  Piezoelectric Materials and their Applications , 1996 .

[97]  M. Sintubin Clay fabrics in relation to the burial history of shales , 1994 .

[98]  A. T. Watson,et al.  X‐ray computed tomography studies of gas storage and transport in Devonian shales , 1994 .

[99]  Donald R. Peacor,et al.  High-resolution x-ray texture goniometry , 1994 .

[100]  J. Pasteris,et al.  Structural characterization of kerogens to granulite-facies graphite; applicability of Raman microprobe spectroscopy , 1993 .

[101]  Robert M. Sneider,et al.  Geological Applications of Capillary Pressure: A Review , 1992 .

[102]  Jean-Noël Rouzaud,et al.  Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy , 1985 .

[103]  K. Rajeshwar,et al.  Application of dielectric spectroscopy to chemical characterization of oil shales , 1985 .

[104]  R. W. Snyder,et al.  Development of FT-i.r. procedures for the characterization of oil shale , 1983 .

[105]  Catherine A. Johnson,et al.  Applications of laser Raman microprobe spectroscopy to the characterization of coals and cokes , 1983 .

[106]  L. Greenspan Humidity Fixed Points of Binary Saturated Aqueous Solutions , 1977, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry.

[107]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[108]  R.F.S. Hearmon,et al.  The elastic constants of anisotropic materials—II , 1956 .

[109]  N. Zhong,et al.  Graptolite-derived organic matter in the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation , 2016 .

[110]  D. Dewhurst,et al.  Texture and diagenesis of Ordovician shale from the Canning Basin, Western Australia: Implications for elastic anisotropy and geomechanical properties , 2015 .

[111]  M. Mastalerz,et al.  Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement , 2015 .

[112]  H. Wenk,et al.  Linking preferred orientations to elastic anisotropy in Muderong Shale, Australia , 2015 .

[113]  J. Urai,et al.  Pore morphology and distribution in the Shaly facies of Opalinus Clay (Mont Terri, Switzerland): Insights from representative 2D BIB–SEM investigations on mm to nm scale , 2013 .

[114]  Anthony R. Kovscek,et al.  CT Imaging of Low-Permeability, Dual-Porosity Systems Using High X-ray Contrast Gas , 2013, Transport in Porous Media.

[115]  Lukasz J. Zielinski,et al.  Characterization of Gas Dynamics in Kerogen Nanopores by NMR , 2011 .

[116]  M. Curtis,et al.  Investigation of the Relationship Between Organic Porosity and Thermal Maturity in The Marcellus Shale , 2011 .

[117]  M. Curtis,et al.  Transmission and Scanning Electron Microscopy Investigation of Pore Connectivity of Gas Shales on the Nanoscale , 2011 .

[118]  J. Schieber,et al.  Common Themes in the Formation and Preservation of Intrinsic Porosity in Shales and Mudstones - Illustrated with Examples Across the Phanerozoic , 2010 .

[119]  Quinn R. Passey,et al.  From Oil-Prone Source Rock to Gas-Producing Shale Reservoir - Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs , 2010 .

[120]  D. Dewhurst,et al.  THE INFLUENCE OF COMPOSITION, DIAGENESIS AND COMPACTION ON SEAL CAPACITY IN THE MUDERONG SHALE, CARNARVON BASIN , 2004 .

[121]  A. R. Kovscek,et al.  Computed tomography in petroleum engineering research , 2003, Geological Society, London, Special Publications.

[122]  D. Dewhurst,et al.  Permeability anisotropy of consolidated clays , 1999, Geological Society, London, Special Publications.

[123]  G. D. Ross,et al.  North Sea Case Histories of Wellbore Stability Predictions for Successful High-Angle Nelson Field Wells , 1994 .

[124]  P. K. Leung,et al.  Dielectric Constant Measurements: A New, Rapid Method To Characterize Shale at the Wellsite , 1992 .

[125]  W. Kalkreuth,et al.  IR classification of kerogen type, thermal maturation, hydrocarbon potential and lithological characteristics , 1991 .