Self-localization for indoor mobile robots based on optical mouse sensor values and simple global camera information

This paper describes a self-localization for indoor mobile robots based on integrating measurement values from multiple optical mouse sensors and a global camera. This paper consists of two parts. Firstly, we propose a dead-reckoning based on increments of the robot movements read directly from the floor using optical mouse sensors. Since the measurement values from multiple optical mouse sensors are compared to each other and only the reliable values are selected, accurate dead-reckoning can be realized compared with the conventional method based on increments of wheel rotations. Secondly, in order to realize robust localization, we propose a method of estimating position and orientation by integrating measured robot position (orientation information is not included) via global camera and dead-reckoning with the Kalman filter