Detection of venom-antivenom (VAV) immunocomplexes in vitro as a measure of antivenom efficacy.

[1]  K. Maduwage,et al.  Use of immunoturbidimetry to detect venom-antivenom binding using snake venoms. , 2013, Journal of pharmacological and toxicological methods.

[2]  G. Isbister,et al.  Tiger snake (Notechis spp) envenoming: Australian Snakebite Project (ASP‐13) , 2012, The Medical journal of Australia.

[3]  Nicholas A. Buckley,et al.  Clinical Effects and Antivenom Dosing in Brown Snake (Pseudonaja spp.) Envenoming — Australian Snakebite Project (ASP-14) , 2012, PloS one.

[4]  B. Currie,et al.  Clinical effects and treatment of envenoming by Hoplocephalus spp. snakes in Australia: Australian Snakebite Project (ASP-12). , 2011, Toxicon : official journal of the International Society on Toxinology.

[5]  C. Sanny In vitro evaluation of total venom-antivenin immune complex formation and binding parameters relevant to antivenin protection against venom toxicity and lethality based on size-exclusion high-performance liquid chromatography. , 2011, Toxicon : official journal of the International Society on Toxinology.

[6]  W. Hodgson,et al.  Development of a sensitive enzyme immunoassay for measuring taipan venom in serum. , 2010, Toxicon : official journal of the International Society on Toxinology.

[7]  G. Isbister Antivenom efficacy or effectiveness: the Australian experience. , 2010, Toxicology.

[8]  G. Isbister,et al.  Commercial monovalent antivenoms in Australia are polyvalent. , 2009, Toxicon : official journal of the International Society on Toxinology.

[9]  A. Kasturiratne,et al.  The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths , 2008, PLoS medicine.

[10]  D. Warrell Unscrupulous marketing of snake bite antivenoms in Africa and Papua New Guinea: choosing the right product--'what's in a name?'. , 2008, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[11]  B. Currie,et al.  Efficacy of antivenom against the procoagulant effect of Australian brown snake (Pseudonaja sp.) venom: in vivo and in vitro studies. , 2007, Toxicon : official journal of the International Society on Toxinology.

[12]  B. Currie,et al.  Enzyme immunoassays in brown snake (Pseudonaja spp.) envenoming: detecting venom, antivenom and venom-antivenom complexes. , 2006, Toxicon : official journal of the International Society on Toxinology.

[13]  J. Joseph,et al.  Group D prothrombin activators from snake venom are structural homologues of mammalian blood coagulation factor Xa. , 2003, The Biochemical journal.

[14]  S. Lawn,et al.  The African challenge , 2002, The Lancet.

[15]  D. Lalloo,et al.  The African challenge , 2002, The Lancet.

[16]  Y. Stienstra,et al.  The African challenge , 2002, The Lancet.

[17]  K. Silamut,et al.  Pharmacokinetics of three commercial antivenoms in patients envenomed by the Malayan pit viper, Calloselasma rhodostoma, in Thailand. , 1990, The American journal of tropical medicine and hygiene.

[18]  D. Warrell,et al.  Paralysis, rhabdomyolysis and haemolysis caused by bites of Russell's viper (Vipera russelli pulchella) in Sri Lanka: failure of Indian (Haffkine) antivenom. , 1988, The Quarterly journal of medicine.

[19]  S. Sutherland “Australian Animal Toxins” , 1983 .

[20]  R. Theakston The application of immunoassay techniques, including enzyme-linked immunosorbent assay (ELISA), to snake venom research. , 1983, Toxicon : official journal of the International Society on Toxinology.