Monte Carlo SURE-Based Parameter Selection for Parallel Magnetic Resonance Imaging Reconstruction

Purpose: Regularizing parallel MRI reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein’s unbiased risk estimate (SURE) that minimizes the multi-channel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods that preserve the undersampled acquired data, which cannot be accomplished using existing techniques. Theory: We derive a weighted MSE criterion appropriate for data-preserving regularized parallel imaging reconstruction and the corresponding weighted SURE. We describe a Monte Carlo approximation of the weighted SURE that uses two evaluations of the reconstruction method per candidate parameter value. Methods: We reconstruct images using the sparsity-promoting methods DESIGN and L1-SPIRiT. We validate Monte Carlo SURE against the weighted MSE. We select the regularization parameter using these methods for various noise levels and undersampling factors and compare the results to those using MSE-optimal parameters. Results: Our method selects nearly MSE-optimal regularization parameters for both DESIGN and L1SPIRiT over a range of noise levels and undersampling factors. Conclusion: The proposed method automatically provides nearly MSE-optimal choices of regularization parameters for data-preserving nonlinear parallel MRI reconstruction methods.

[1]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[2]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[3]  H. Engl Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates , 1987 .

[4]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[5]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[6]  Xiao-Ping Zhang,et al.  Adaptive denoising based on SURE risk , 1998, IEEE Signal Processing Letters.

[7]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[8]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[9]  K. Kwong,et al.  Parallel imaging reconstruction using automatic regularization , 2004, Magnetic resonance in medicine.

[10]  Wilson Fong Handbook of MRI Pulse Sequences , 2005 .

[11]  Thierry Blu,et al.  The SURE-LET Approach to Image Denoising , 2007, IEEE Transactions on Image Processing.

[12]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[13]  Bo Liu,et al.  A statistical approach to SENSE regularization with arbitrary k‐space trajectories , 2008, Magnetic resonance in medicine.

[14]  Michael Unser,et al.  Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint , 2008, 2008 15th IEEE International Conference on Image Processing.

[15]  Thierry Blu,et al.  Monte-Carlo Sure: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms , 2008, IEEE Transactions on Image Processing.

[16]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[17]  L. Ying,et al.  Accelerating SENSE using compressed sensing , 2009, Magnetic resonance in medicine.

[18]  Yonina C. Eldar Generalized SURE for Exponential Families: Applications to Regularization , 2008, IEEE Transactions on Signal Processing.

[19]  M. Lustig,et al.  SPIRiT: Iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space , 2010, Magnetic resonance in medicine.

[20]  Yonina C. Eldar,et al.  The Projected GSURE for Automatic Parameter Tuning in Iterative Shrinkage Methods , 2010, Applied and Computational Harmonic Analysis.

[21]  M. Lustig,et al.  Improved pediatric MR imaging with compressed sensing. , 2010, Radiology.

[22]  Kurt Keutzer,et al.  Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of pediatric patients , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[23]  Caroline Chaux,et al.  Image reconstruction from multiple sensors using stein's principle. Application to parallel MRI , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[24]  Jeffrey A. Fessler,et al.  Regularization Parameter Selection for Nonlinear Iterative Image Restoration and MRI Reconstruction Using GCV and SURE-Based Methods , 2012, IEEE Transactions on Image Processing.

[25]  J. Fessler,et al.  Automatic L 1-SPIRiT Regularization Parameter Selection Using Monte-Carlo SURE , 2012 .

[26]  James Demmel,et al.  Fast $\ell_1$ -SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel Implementation and Clinically Feasible Runtime , 2012, IEEE Transactions on Medical Imaging.

[27]  Leo Grady,et al.  Accelerated parallel magnetic resonance imaging reconstruction using joint estimation with a sparse signal model , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[28]  Jeffrey A. Fessler,et al.  Sure-based parameter selection for parallel MRI reconstruction using GRAPPA and sparsity , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[29]  Jeffrey A. Fessler,et al.  Non-Cartesian MRI Reconstruction With Automatic Regularization Via Monte-Carlo SURE , 2013, IEEE Transactions on Medical Imaging.