Reversible magneto-elastic behavior : A multiscale approach

Abstract Magnetic and mechanical behaviors are strongly coupled. But few models are able to describe magneto-mechanical coupling effects. We propose a multiscale approach for the modeling of the reversible magneto-elastic behavior of ferromagnetic materials. This approach stands between macroscopic phenomenological modeling and micromagnetic simulations. We detail first the definition of the magneto-elastic behavior of a single crystal, deduced from energetic considerations made at the scale of magnetic domains and hypotheses concerning the domains microstructure. This model is then applied to the description of the behavior of polycrystalline media, through a multiscale approach. The heterogeneity of stress and magnetic field is taken into account through a self-consistent localization–homogenization scheme, including crystallographic texture data. Results are discussed and compared to experimental data from the literature.

[1]  J. P. Joule Esq.,et al.  XVII. On the effects of magnetism upon the dimensions of iron and steel bars , 1847 .

[2]  Trémolet de Lacheisserie,et al.  Magnetostriction : theory and applications of magnetoelasticity , 1993 .

[3]  R. Billardon,et al.  A multiscale model for magneto-elastic couplings , 1999 .

[4]  K. Bowman Mechanical Behavior of Materials , 2003 .

[5]  Dimitris C. Lagoudas,et al.  Shape memory alloys, Part II: Modeling of polycrystals , 2006 .

[6]  G. Durin,et al.  Effect of stress anisotropy on hysteresis and Barkhausen noise in amorphous materials , 1999 .

[7]  Laurent Daniel,et al.  Multiscale strategy for the determination of magneto-elastic behaviour: Discussion and application to Ni-Zn ferrites , 2007 .

[8]  S. Chikazumi Physics of ferromagnetism , 1997 .

[9]  Antonio DeSimone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[10]  Comparison between two models of magnetic hysteresis accounting for stress , 2004 .

[11]  Robert V. Kohn,et al.  Magnetic microstructures - a paradigm of multiscale problems , 1999 .

[12]  David Jiles,et al.  Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis , 1993 .

[13]  Songjun He Modelisation et simulation numerique de materiaux magnetostrictifs , 1999 .

[14]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[15]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[16]  J. Huber,et al.  Multi-grain analysis versus self-consistent estimates of ferroelectric polycrystals , 2007 .

[17]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[18]  Antonio De Simone,et al.  Energy minimizers for large ferromagnetic bodies , 1993 .

[19]  Antonio DeSimone,et al.  A constrained theory of magnetoelasticity , 2002 .

[20]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[21]  Norman A. Fleck,et al.  A constitutive model for ferroelectric polycrystals , 1999 .

[22]  Frédéric Bouillault,et al.  3D FEM of magnetostriction phenomena using coupled constitutive laws , 2004 .

[23]  David Kinderlehrer,et al.  Frustration in ferromagnetic materials , 1990 .

[24]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[26]  C. Holt,et al.  Magnetostriction in grain-oriented silicon-iron , 1962 .

[27]  L. Brinson,et al.  Shape memory alloys, Part I: General properties and modeling of single crystals , 2006 .