The Lowlands team at TRECVID 2007

In this report we summarize our methods and results for the search tasks in TRECVID 2007. We employ two different kinds of search: purely ASR based and purely concept based search. However, there is not significant difference of the performance of the two systems. Using neighboring shots for the combination of two concepts seems to be beneficial. General preprocessing of queries increased the performance and choosing detector sources helped. However, for all automatic search components we need to perform further investigations.

[1]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 1 , 2000, Inf. Process. Manag..

[2]  Djoerd Hiemstra,et al.  A probabilistic ranking framework using unobservable binary events for video search , 2008, CIVR '08.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Shih-Fu Chang,et al.  CU-VIREO 374 : Fusing Columbia 374 and VIREO 374 for Large Scale Semantic Concept Detection , 2008 .

[5]  Bo Zhang,et al.  Using High-Level Semantic Features in Video Retrieval , 2006, CIVR.

[6]  Djoerd Hiemstra,et al.  PFTijah: text search in an XML database system , 2006 .

[7]  Alexander J. Smola,et al.  Advances in Large Margin Classifiers , 2000 .

[8]  Rong Yan,et al.  Probabilistic models for combining diverse knowledge sources in multimedia retrieval , 2006 .

[9]  Djoerd Hiemstra,et al.  Building Detectors to Support Searches on Combined Semantic Concepts , 2007 .

[10]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 2 , 2000, Inf. Process. Manag..

[11]  Nicu Sebe,et al.  The State of the Art in Image and Video Retrieval , 2003, CIVR.

[12]  Djoerd Hiemstra,et al.  Combining Information Sources for Video Retrieval , 2003, TRECVID.

[13]  Djoerd Hiemstra,et al.  The Effectiveness of Concept Based Search for Video Retrieval , 2007, LWA.

[14]  Elaine Toms,et al.  The effect of speech recognition accuracy rates on the usefulness and usability of webcast archives , 2006, CHI.

[15]  Marcel Worring,et al.  The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.

[16]  Franciska de Jong,et al.  Annotation of Heterogeneous Multimedia Content Using Automatic Speech Recognition , 2007, SAMT.

[17]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[18]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[19]  Amanda Spink,et al.  Real life, real users, and real needs: a study and analysis of user queries on the web , 2000, Inf. Process. Manag..

[20]  Michael G. Christel Evaluation and user studies with respect to video summarization and browsing , 2006, Electronic Imaging.

[21]  Cor J. Veenman,et al.  Robust Scene Categorization by Learning Image Statistics in Context , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[22]  Stéphane Ayache,et al.  Video Corpus Annotation Using Active Learning , 2008, ECIR.

[23]  Mark H. Chignell,et al.  Searching in audio: the utility of transcripts, dichotic presentation, and time-compression , 2006, CHI.

[24]  Maxime Morge Ecole Nationale Superieure des Mines de Saint Etienne Universite Jean Monnet. , 2008 .

[25]  Alan F. Smeaton,et al.  The Físchlár-News-Stories System: Personalised Access to an Archive of TV News , 2004, RIAO.

[26]  Jun Yang,et al.  CMU Informedia's TRECVID 2005 Skirmishes , 2005, TRECVID.

[27]  Mohan S. Kankanhalli,et al.  Proceedings of the 2008 international conference on Content-based image and video retrieval , 2008 .