Quasi-semi-metrics, Oriented Multi-cuts and Related Polyhedra

We introduce polyhedral cones and polytopes, associated with quasi-semi-metrics (oriented distances), in particular with oriented multi-cuts, on n points. We compute generators and facets of these polyhedra for small values of n and study their graphs.

[1]  J. Haantjes,et al.  Review: L. M. Blumenthal, Theory and applications of distance geometry , 1954 .

[2]  Michel Deza,et al.  The Symmetries of the Cut Polytope and of Some Relatives , 1990, Applied Geometry And Discrete Mathematics.

[3]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[4]  Anthony Karel Seda Quasi-Metrics and the Semantics of Logic Programs , 1997, Fundam. Informaticae.

[5]  Monique Laurent,et al.  Graphic vertices of the metric polytope , 1996, Discret. Math..

[6]  W. Groß Grundzüge der Mengenlehre , 1915 .

[7]  Michael J. Mossinghoff,et al.  Combinatorics and graph theory , 2000 .

[8]  Franz Aurenhammer,et al.  Voronoi diagrams for direction-sensitive distances , 1997, SCG '97.

[9]  Gary Chartrand,et al.  Directed distance in digraphs: Centers and medians , 1993, J. Graph Theory.

[10]  Dimitris Alevras,et al.  Small Min-Cut Polyhedra , 1999, Math. Oper. Res..

[11]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[12]  G. Reinelt,et al.  Combinatorial optimization and small polytopes , 1996 .

[13]  R. Stoltenberg On quasi-metric spaces , 1969 .

[14]  M. Fréchet Sur quelques points du calcul fonctionnel , 1906 .

[15]  Michel Deza,et al.  The Ridge Graph of the Metric Polytope and Some Relatives , 1994 .

[16]  Viatcheslav Grishukhin Computing extreme rays of the metric cone for seven points , 1992, Eur. J. Comb..

[17]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[18]  Peter McMullen,et al.  Polytopes: Abstract, Convex and Computational , 1994 .

[19]  Michel Deza,et al.  On Skeletons, Diameters and Volumes of Metric Polyhedra , 1995, Combinatorics and Computer Science.