On quasi-interpretations, blind abstractions and implicit complexity

Quasi-interpretations are a technique for guaranteeing complexity bounds on first-order functional programs: in particular, with termination orderings, they give a sufficient condition for a program to be executable in polynomial time (Marion and Moyen 2000), which we call the P-criterion here. We study properties of the programs satisfying the P-criterion in order to improve the understanding of its intensional expressive power. Given a program, its blind abstraction is the non-deterministic program obtained by replacing all constructors with the same arity by a single one. A program is blindly polytime if its blind abstraction terminates in polynomial time. We show that all programs satisfying a variant of the P-criterion are in fact blindly polytime. Then we give two extensions of the P-criterion: one relaxing the termination ordering condition and the other (the bounded-value property) giving a necessary and sufficient condition for a program to be polynomial time executable, with memoisation.

[1]  Gerard Huet,et al.  Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[2]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[3]  Georg Moser,et al.  Complexity Analysis by Rewriting , 2008, FLOPS.

[4]  Martin Hofmann,et al.  Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[5]  Jean-Yves Girard Light Linear Logic , 1994, LCC.

[6]  Jean-Yves Marion,et al.  Quasi-interpretation: a way to control ressources , 2005 .

[7]  Neil D. Jones,et al.  LOGSPACE and PTIME Characterized by Programming Languages , 1999, Theor. Comput. Sci..

[8]  Jean-Yves Marion,et al.  Resource Analysis by Sup-interpretation , 2006, FLOPS.

[9]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[10]  Guillaume Bonfante,et al.  On Lexicographic Termination Ordering with Space Bound Certifications , 2001, Ershov Memorial Conference.

[11]  Roberto M. Amadio Synthesis of max-plus quasi-interpretations , 2005, Fundam. Informaticae.

[12]  Guillaume Bonfante,et al.  Algorithms with polynomial interpretation termination proof , 2001, Journal of Functional Programming.

[13]  Jean-Yves Marion,et al.  Sup-interpretations, a semantic method for static analysis of program resources , 2009, TOCL.

[14]  Jan Willem Klop,et al.  Examples of TRSs and special rewriting formats , 2003 .

[15]  Guillaume Bonfante,et al.  Quasi-interpretations and Small Space Bounds , 2005, RTA.

[16]  Gérard P. Huet,et al.  Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.

[17]  Jean-Yves Marion,et al.  Analysing the implicit complexity of programs , 2003, Inf. Comput..

[18]  Romain Péchoux Analyse de la complexité des programmes par interprétation sémantique , 2007 .

[19]  Guillaume Bonfante,et al.  Quasi-interpretation Synthesis by Decomposition , 2007, ICTAC.

[20]  Daniel Leivant,et al.  Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.

[21]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[22]  Jean-Yves Marion,et al.  Efficient First Order Functional Program Interpreter with Time Bound Certifications , 2000, LPAR.

[23]  Chris Pollett,et al.  Minimization and NP multifunctions , 2004, Theor. Comput. Sci..

[24]  Guillaume Bonfante,et al.  Quasi-interpretations a way to control resources , 2011, Theor. Comput. Sci..