A survey of eight hot Jupiters in secondary eclipse using WIRCam at CFHT.

We present near infrared high-precision photometry for eight transiting hot Jupiters observed during their predicted secondary eclipses. Our observations were carried out using the staring mode of the WIRCam instrument on the Canada-France-Hawaii Telescope (CFHT). We present the observing strategies and data reduction methods which delivered time series photometry with statistical photometric precision as low as 0.11%. We performed a Bayesian analysis to model the eclipse parameters and systematics simultaneously. The measured planet-to-star flux ratios allowed us to constrain the thermal emission from the day side of these hot Jupiters, as we derived the planet brightness temperatures. Our results combined with previously observed eclipses reveal an excess in the brightness temperatures relative to the blackbody prediction for the equilibrium temperatures of the planets for a wide range of heat redistribution factors. We find a trend that this excess appears to be larger for planets with lower equilibrium temperatures. This may imply some additional sources of radiation, such as reflected light from the host star and/or thermal emission from residual internal heat from the formation of the planet.

[1]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[2]  Keivan G. Stassun,et al.  KELT-4Ab: AN INFLATED HOT JUPITER TRANSITING THE BRIGHT (V ∼ 10) COMPONENT OF A HIERARCHICAL TRIPLE , 2015, 1510.00015.

[3]  D. Bayliss,et al.  Secondary eclipse observations for seven hot-Jupiters from the Anglo-Australian Telescope , 2015, 1509.04147.

[4]  E. Agol,et al.  SPITZER SECONDARY ECLIPSE OBSERVATIONS OF FIVE COOL GAS GIANT PLANETS AND EMPIRICAL TRENDS IN COOL PLANET EMISSION SPECTRA , 2015, 1508.00902.

[5]  Nicolas B. Cowan,et al.  Balancing the energy budget of short-period giant planets: evidence for reflective clouds and optical absorbers , 2015, 1502.06970.

[6]  Keivan G. Stassun,et al.  KELT-7b: A HOT JUPITER TRANSITING A BRIGHT V = 8.54 RAPIDLY ROTATING F-STAR , 2015, The Astronomical Journal.

[7]  The Fortuitous Latitude of the Pierre Auger Observatory and Telescope Array for Reconstructing the Quadrupole Moment , 2014, 1409.0883.

[8]  J. Morse,et al.  A Comprehensive Study of Kepler Phase Curves and Secondary Eclipses: Temperatures and Albedos of Confirmed Kepler Giant Planets , 2014, 1404.4348.

[9]  D. Bayliss,et al.  Ks-band secondary eclipses of WASP-19b and WASP-43b with the Anglo-Australian Telescope , 2014, 1409.2775.

[10]  E. Perlman,et al.  SUBARU SPECTROSCOPY AND SPECTRAL MODELING OF CYGNUS A , 2014, 1404.0335.

[11]  A. Cimatti,et al.  ACTIVE GALACTIC NUCLEUS FEEDBACK AT z ∼ 2 AND THE MUTUAL EVOLUTION OF ACTIVE AND INACTIVE GALAXIES , 2013, 1311.4401.

[12]  D. Tripathi,et al.  ASYMMETRIES IN CORONAL SPECTRAL LINES AND EMISSION MEASURE DISTRIBUTION , 2013, 1310.0168.

[13]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[14]  R. Jayawardhana,et al.  OPTICAL PHASE CURVES OF KEPLER EXOPLANETS , 2013, 1305.3271.

[15]  Julian H. Krolik,et al.  A MONTE CARLO CODE FOR RELATIVISTIC RADIATION TRANSPORT AROUND KERR BLACK HOLES , 2013, 1302.3214.

[16]  L. Hebb,et al.  KELT-2Ab: A HOT JUPITER TRANSITING THE BRIGHT (V = 8.77) PRIMARY STAR OF A BINARY SYSTEM , 2012, 1206.1592.

[17]  Joshua N. Winn,et al.  THE TRANSIT LIGHT-CURVE PROJECT. XIV. CONFIRMATION OF ANOMALOUS RADII FOR THE EXOPLANETS TrES-4b, HAT-P-3b, AND WASP-12b , 2011, 1103.3078.

[18]  N. Gehrels,et al.  HETEROGENEITY IN SHORT GAMMA-RAY BURSTS , 2011, 1101.1648.

[19]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM TrES-3b: A Ks-BAND DETECTION AND AN H-BAND UPPER LIMIT ON THE DEPTH OF THE SECONDARY ECLIPSE , 2010, 1006.0737.

[20]  S. Seager,et al.  Exoplanet Atmospheres , 2010, 1005.4037.

[21]  David Lafreniere,et al.  NEAR-INFRARED THERMAL EMISSION FROM THE HOT JUPITER TrES-2b: GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE , 2010, 1005.3027.

[22]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[23]  Matthias Morzfeld,et al.  Communications in Applied Mathematics and Computational Science , 2010 .

[24]  A. Burrows,et al.  DETECTION OF A TEMPERATURE INVERSION IN THE BROADBAND INFRARED EMISSION SPECTRUM OF TrES-4 , 2008, 0810.0021.

[25]  Michel Mayor,et al.  The Broadband Infrared Emission Spectrum of the Exoplanet HD 189733b , 2008, 0802.0845.

[26]  Heather A. Knutson,et al.  Extrasolar planets: Water on distant worlds , 2007, Nature.

[27]  Drake Deming,et al.  The hottest planet , 2007, Nature.

[28]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[29]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[30]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[31]  A. Burrows,et al.  Albedo and Reflection Spectra of Extrasolar Giant Planets , 1999, astro-ph/9910504.

[32]  F. Deubner,et al.  Ground — based instrumentation , 1994 .

[33]  D. Egret,et al.  The simbad astronomical database , 1991 .

[34]  M. Bessell,et al.  JHKLM PHOTOMETRY: STANDARD SYSTEMS, PASSBANDS, AND INTRINSIC COLORS , 1988 .

[35]  W. Rey Introduction to Robust and Quasi-Robust Statistical Methods , 1983 .