Extension of GKB‐FP algorithm to large‐scale general‐form Tikhonov regularization

SUMMARY In a recent paper an algorithm for large-scale Tikhonov regularization in standard form called GKB-FP was proposed and numerically illustrated. In this paper, further insight into the convergence properties of this method is provided, and extensions to general-form Tikhonov regularization are introduced. In addition, as alternative to Tikhonov regularization, a preconditioned LSQR method coupled with an automatic stopping rule is proposed. Preconditioning seeks to incorporate smoothing properties of the regularization matrix into the computed solution. Numerical results are reported to illustrate the methods on large-scale problems. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Hassane Sadok,et al.  Implementations of range restricted iterative methods for linear discrete ill-posed problems , 2012 .

[2]  Per Christian Hansen,et al.  Regularization methods for large-scale problems , 1993 .

[3]  A. Bakushinskii Remarks on choosing a regularization parameter using the quasioptimality and ratio criterion , 1985 .

[4]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[5]  Angelika Bunse-Gerstner,et al.  An improved preconditioned LSQR for discrete ill-posed problems , 2006, Math. Comput. Simul..

[6]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[7]  Fabiana Zama,et al.  Iterative methods for ill-posed problems and semiconvergent sequences , 2006 .

[8]  Leonardo S. Borges,et al.  GKB-FP: an algorithm for large-scale discrete ill-posed problems , 2010 .

[9]  Misha Elena Kilmer,et al.  A Projection-Based Approach to General-Form Tikhonov Regularization , 2007, SIAM J. Sci. Comput..

[10]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[11]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[12]  Lothar Reichel,et al.  Tikhonov regularization based on generalized Krylov subspace methods , 2012 .

[13]  Moon Gi Kang,et al.  Super-resolution image reconstruction: a technical overview , 2003, IEEE Signal Process. Mag..

[14]  P. Hansen The discrete picard condition for discrete ill-posed problems , 1990 .

[15]  Mark A. Lukas,et al.  Comparing parameter choice methods for regularization of ill-posed problems , 2011, Math. Comput. Simul..

[16]  G. Rodriguez,et al.  An algorithm for estimating the optimal regularization parameter by the L-curve , 2005 .

[17]  C. Atkinson METHODS FOR SOLVING INCORRECTLY POSED PROBLEMS , 1985 .

[18]  S. Gómez,et al.  The triangle method for finding the corner of the L-curve , 2002 .

[19]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[20]  Fermín S. V. Bazán,et al.  Fixed-point iterations in determining the Tikhonov regularization parameter , 2008 .

[21]  M. Saunders Computing projections with LSQR , 1997 .

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  J. Nagy,et al.  A weighted-GCV method for Lanczos-hybrid regularization. , 2007 .

[24]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[25]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[26]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[27]  L. Reichel,et al.  Large-scale Tikhonov regularization via reduction by orthogonal projection , 2012 .

[28]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[29]  P. Hansen,et al.  Subspace Preconditioned LSQR for Discrete Ill-Posed Problems , 2003 .

[30]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[31]  Michiel E. Hochstenbach,et al.  An iterative method for Tikhonov regularization with a general linear regularization operator , 2010 .

[32]  G Brix,et al.  Quantification of pulmonary microcirculation by dynamic contrast‐enhanced magnetic resonance imaging: Comparison of four regularization methods , 2013, Magnetic resonance in medicine.

[33]  Teresa Reginska,et al.  A Regularization Parameter in Discrete Ill-Posed Problems , 1996, SIAM J. Sci. Comput..

[34]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[35]  L. Eldén A weighted pseudoinverse, generalized singular values, and constrained least squares problems , 1982 .

[36]  Toke Koldborg Jensen,et al.  An adaptive pruning algorithm for the discrete L-curve criterion , 2007 .

[37]  Lothar Reichel,et al.  Old and new parameter choice rules for discrete ill-posed problems , 2013, Numerical Algorithms.

[38]  Juliano B. Francisco,et al.  An improved fixed-point algorithm for determining a Tikhonov regularization parameter , 2009 .

[39]  Per Christian Hansen,et al.  Smoothing-Norm Preconditioning for Regularizing Minimum-Residual Methods , 2006, SIAM J. Matrix Anal. Appl..