Subdifferentials of a perturbed minimal time function in normed spaces

In a general normed vector space, we study the perturbed minimal time function determined by a bounded closed convex set $$U$$U and a proper lower semicontinuous function $$f(\cdot )$$f(·). In particular, we show that the Fréchet subdifferential and proximal subdifferential of a perturbed minimal time function are representable by virtue of corresponding subdifferential of $$f(\cdot )$$f(·) and level sets of the support function of $$U$$U. Some known results is a special case of these results.

[1]  Peter R. Wolenski,et al.  The subgradient formula for the minimal time function in the case of constant dynamics in Hilbert space , 2004, J. Glob. Optim..

[2]  Yiran He,et al.  Subdifferentials of a minimal time function in normed spaces , 2009 .

[3]  Renxing Ni Generic solutions for some perturbed optimization problem in non-reflexive Banach spaces , 2005 .

[4]  R. Temam,et al.  Nonconvex Optimization Problems Depending on a Parameter , 1975 .

[5]  Chong Li,et al.  Porosity of perturbed optimization problems in Banach spaces , 2006 .

[6]  Kung Fu Ng,et al.  Subdifferentials of a minimum time function in Banach spaces , 2006 .

[7]  T. Zolezzi,et al.  Well-Posed Optimization Problems , 1993 .

[8]  Chong Li,et al.  Well-posedness of a class of perturbed optimization problems in Banach spaces ✩ , 2008 .

[9]  L. P. Vlasov APPROXIMATIVE PROPERTIES OF SETS IN NORMED LINEAR SPACES , 1973 .

[10]  J. Lindenstrauss,et al.  On weakly compact subsets of Banach spaces , 1966 .

[11]  Chong Li,et al.  Limiting subdifferentials of perturbed distance functions in Banach spaces , 2012 .

[12]  Chong Li,et al.  Subdifferentials of perturbed distance functions in Banach spaces , 2010, J. Glob. Optim..

[13]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[14]  Chong Li,et al.  GENERIC WELL-POSEDNESS FOR PERTURBED OPTIMIZATION PROBLEMS IN BANACH SPACES , 2010 .

[15]  S. Cobzaş,et al.  Generic Existence of Solutions for Some Perturbed Optimization Problems , 2000 .

[16]  F. Clarke,et al.  Proximal Smoothness and the Lower{C 2 Property , 1995 .

[17]  M. Ferris,et al.  On the Clarke subdifferential of the distance function of a closed set , 1992 .

[18]  Chong Li,et al.  Existence and porosity for a class of perturbed optimization problems in Banach spaces , 2007 .

[19]  Lionel Thibault,et al.  On various notions of regularity of sets in nonsmooth analysis , 2002 .

[20]  P. Wolenski,et al.  Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces , 2004 .

[21]  Gérard Lebourg Perturbed optimization problems in Banach spaces , 1979 .

[22]  M. F. Bidaut Existence theorems for usual and approximate solutions of optimal control problems , 1975 .