Ultrafast laser inscribed integrated waveguide components for L-band interferometry

In this paper we report the fabrication and mid-infrared characterization (λ = 3.39 μm) of evanescent field directional couplers. These devices were fabricated using the femtosecond laser direct-writing technique in commercially available Gallium Lanthanum Sulphide (GLS) glass substrates. We demonstrate that the power splitting ratios of the devices can be controlled by adjusting the length of the interaction section between the waveguides, and consequently we demonstrate power splitting ratios of between 8% and 99% for 3.39 μm light. We anticipate that mid-IR beam integrated-optic beam combination instruments based on this technology will be key for future mid-infrared astronomical interferometry, particularly for nulling interferometry and earth-like exoplanet imaging.

[1]  T. L. Myers,et al.  Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. , 2006, Optics letters.

[2]  Lucas Labadie,et al.  First fringes with an integrated-optics beam combiner at 10 μm. A new step towards instrument miniaturization for mid-infrared interferometry , 2011, 1104.2899.

[3]  Yves Bellouard,et al.  Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks , 2004, SPIE LASE.

[4]  Nemanja Jovanovic,et al.  Low bend loss waveguides enable compact, efficient 3D photonic chips. , 2013, Optics express.

[5]  Romain Petrov,et al.  Imaging the spinning gas and dust in the disc around the supergiant A[e] star HD 62623 , 2010, 1012.2957.

[6]  F. Malbet,et al.  Milli-arcsecond images of the Herbig Ae star HD 163296 , 2010, 1007.2930.

[7]  T A Birks,et al.  A complex multi-notch astronomical filter to suppress the bright infrared sky. , 2011, Nature communications.

[8]  J. Monnier Optical interferometry in astronomy , 2003, astro-ph/0307036.

[9]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[10]  Animesh Jha,et al.  Three-dimensional mid-infrared photonic circuits in chalcogenide glass. , 2012, Optics letters.

[11]  Lucas Labadie,et al.  Mid-infrared guided optics: a perspective for astronomical instruments. , 2009, Optics express.

[12]  Lucas Labadie,et al.  Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry. , 2014, Optics letters.

[13]  Nemanja Jovanovic,et al.  Design of optically path-length-matched, three-dimensional photonic circuits comprising uniquely routed waveguides. , 2012, Applied optics.

[14]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[15]  Jeremy L O'Brien,et al.  Laser written waveguide photonic quantum circuits. , 2009, Optics express.

[16]  R. Iyer,et al.  Telecom-Band Directional Coupler Written With Femtosecond Fiber Laser , 2006, IEEE Photonics Technology Letters.

[17]  P. Kern,et al.  Mid-infrared laser light nulling experiment using single-mode conductive waveguides , 2007, 0705.0146.

[18]  Joss Bland-Hawthorn,et al.  Astrophotonics: a new era for astronomical instruments. , 2009, Optics express.

[19]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[20]  Mathieu Carras,et al.  Low loss SiGe graded index waveguides for mid-IR applications. , 2014, Optics express.

[21]  Yoshinori Hibino,et al.  Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. , 2005, Optics letters.

[22]  J. G. Robertson,et al.  Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging , 2012, 1210.0603.

[23]  Nick Cvetojevic,et al.  PIMMS: photonic integrated multimode microspectrograph , 2010, Astronomical Telescopes + Instrumentation.

[24]  J. Monnier,et al.  Midinfrared broadband achromatic astronomical beam combiner for nulling interferometry. , 2010, Applied optics.

[25]  Jean-Philippe Berger,et al.  An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 microm. , 2009, Optics express.