Atomistic-to-continuum coupling

Atomistic-to-continuum (a/c) coupling methods are a class of computational multiscale schemes that combine the accuracy of atomistic models with the efficiency of continuum elasticity. They are increasingly being utilized in materials science to study the fundamental mechanisms of material failure such as crack propagation and plasticity, which are governed by the interaction between crystal defects and long-range elastic fields. In the construction of a/c coupling methods, various approximation errors are committed. A rigorous numerical analysis approach that classifies and quantifies these errors can give confidence in the simulation results, as well as enable optimization of the numerical methods for accuracy and computational cost. In this article, we present such a numerical analysis framework, which is inspired by recent research activity.

[1]  Christoph Ortner,et al.  Iterative Methods for the Force-based Quasicontinuum Approximation , 2009 .

[2]  Mitchell Luskin,et al.  Iterative Solution of the Quasicontinuum Equilibrium Equations with Continuation , 2008, J. Sci. Comput..

[3]  Augustin-Louis Cauchy De la pression ou tension dans un système de points matériels , 2009 .

[4]  Thomas Y. Hou,et al.  A mathematical framework of the bridging scale method , 2006 .

[5]  E. Weinan,et al.  A sub-linear scaling algorithm for computing the electronic structure of materials , 2007 .

[6]  Alexander V. Shapeev,et al.  Consistent Energy-Based Atomistic/Continuum Coupling for Two-Body Potentials in One and Two Dimensions , 2010, Multiscale Model. Simul..

[7]  Mitchell Luskin,et al.  Analysis of a force-based quasicontinuum approximation , 2006 .

[8]  Harold S. Park,et al.  Nano Mechanics and Materials: Theory, Multiscale Methods and Applications , 2006 .

[9]  Alexander V. Shapeev,et al.  Analysis of an Energy-based Atomistic/Continuum Coupling Approximation of a Vacancy in the 2D Triangular Lattice , 2011 .

[10]  Qiang Du,et al.  Analysis of the Volume-Constrained Peridynamic Navier Equation of Linear Elasticity , 2013 .

[11]  Mitchell Luskin,et al.  Error Estimation and Atomistic-Continuum Adaptivity for the Quasicontinuum Approximation of a Frenkel-Kontorova Model , 2007, Multiscale Model. Simul..

[12]  Florian Theil,et al.  Validity and Failure of the Cauchy-Born Hypothesis in a Two-Dimensional Mass-Spring Lattice , 2002, J. Nonlinear Sci..

[13]  Nicholas Kevlahan,et al.  Principles of Multiscale Modeling , 2012 .

[14]  Alexander V. Shapeev,et al.  Theory-based benchmarking of the blended force-based quasicontinuum method☆ , 2013, 1304.1368.

[15]  Alexander Stukowski,et al.  A variational formulation of the quasicontinuum method based on energy sampling in clusters , 2009 .

[16]  Christoph Ortner,et al.  Accuracy of quasicontinuum approximations near instabilities , 2009, 0905.2914.

[17]  D. Arnold,et al.  A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .

[18]  Christoph Ortner,et al.  Stability, Instability, and Error of the Force-based Quasicontinuum Approximation , 2009, 0903.0610.

[19]  Alexander V. Shapeev,et al.  The Spectrum of the Force-Based Quasicontinuum Operator for a Homogeneous Periodic Chain , 2010, Multiscale Model. Simul..

[20]  Christoph Ortner,et al.  Linear Stationary Iterative Methods for the Force-Based Quasicontinuum Approximation , 2011 .

[21]  PING LIN,et al.  Convergence Analysis of a Quasi-Continuum Approximation for a Two-Dimensional Material Without Defects , 2007, SIAM J. Numer. Anal..

[22]  M. A. Dokainish,et al.  Simulation of the (001) plane crack in α-iron employing a new boundary scheme , 1982 .

[23]  Brian Van Koten,et al.  Analysis of Energy-Based Blended Quasi-Continuum Approximations , 2011, SIAM J. Numer. Anal..

[24]  C. Woodward,et al.  Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. , 2002, Physical review letters.

[25]  Mitchell Luskin,et al.  AN ANALYSIS OF THE EFFECT OF GHOST FORCE OSCILLATION ON QUASICONTINUUM ERROR , 2008 .

[26]  F. Legoll,et al.  A numerical strategy for coarse-graining two-dimensional atomistic models at finite temperature: The membrane case , 2011, 1109.5978.

[27]  Pavel B. Bochev,et al.  A Force-Based Blending Model forAtomistic-to-Continuum Coupling , 2007 .

[28]  Endre Süli,et al.  ANALYSIS OF A QUASICONTINUUM METHOD IN ONE DIMENSION , 2008 .

[29]  Lattice Green’s Functions in Nonlinear Analysis of Defects , 2007 .

[30]  Christoph Ortner,et al.  An Analysis of Node-Based Cluster Summation Rules in the Quasicontinuum Method , 2008, SIAM J. Numer. Anal..

[31]  C. Ortner,et al.  ON THE STABILITY OF BRAVAIS LATTICES AND THEIR CAUCHY-BORN APPROXIMATIONS ∗ , 2012 .

[32]  R. Millera,et al.  On the nonlocal nature of dislocation nucleation during nanoindentation , 2008 .

[33]  Frédéric Legoll,et al.  Finite-Temperature Coarse-Graining of One-Dimensional Models: Mathematical Analysis and Computational Approaches , 2010, J. Nonlinear Sci..

[34]  Pavel B. Bochev,et al.  On Atomistic-to-Continuum Coupling by Blending , 2008, Multiscale Model. Simul..

[35]  Pavel B. Bochev,et al.  An Optimization-based Atomistic-to-Continuum Coupling Method , 2013, SIAM J. Numer. Anal..

[36]  V. Gavini,et al.  A field theoretical approach to the quasi-continuum method , 2011 .

[37]  Kaushik Bhattacharya,et al.  Quasi-continuum orbital-free density-functional theory : A route to multi-million atom non-periodic DFT calculation , 2007 .

[38]  Endre Süli,et al.  A priori error analysis of two force-based atomistic/continuum models of a periodic chain , 2011, Numerische Mathematik.

[39]  Weinan E,et al.  Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems , 2007 .

[40]  J. Tinsley Oden,et al.  On the application of the Arlequin method to the coupling of particle and continuum models , 2008 .

[41]  M. Luskin,et al.  Lattice Stability for Atomistic Chains Modeled by Local Approximations of the Embedded Atom Method , 2011, 1108.4473.

[42]  Christoph Ortner,et al.  THE ROLE OF THE PATCH TEST IN 2D ATOMISTIC-TO-CONTINUUM COUPLING METHODS ∗ , 2011, 1101.5256.

[43]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[44]  Tomotsugu Shimokawa,et al.  Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region , 2004 .

[45]  Christoph Ortner,et al.  A posteriori error control for a quasi-continuum approximation of a periodic chain , 2014 .

[46]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[47]  A. Shapeev,et al.  Interpolants of lattice functions for the analysis of atomistic/continuum multiscale methods , 2012, 1204.3705.

[48]  Mitchell Luskin,et al.  Goal-Oriented Adaptive Mesh Refinement for the Quasicontinuum Approximation of a Frenkel-Kontorova Model , 2007, 0711.1876.

[49]  Harold S. Park,et al.  Bridging Scale Methods for Nanomechanics and Materials , 2006 .

[50]  Charalambos Makridakis,et al.  On Atomistic-to-Continuum Couplings without Ghost Forces in Three Dimensions , 2012, 1211.7158.

[51]  Yanzhi Zhang,et al.  A Quadrature-Rule Type Approximation to the Quasi-Continuum Method , 2010, Multiscale Model. Simul..

[52]  Brian Van Koten,et al.  A Computational and Theoretical Investigation of the Accuracy of Quasicontinuum Methods , 2010, 1012.6031.

[53]  F. Legoll,et al.  Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics , 2005 .

[54]  Mitchell Luskin,et al.  An Optimal Order Error Analysis of the One-Dimensional Quasicontinuum Approximation , 2009, SIAM J. Numer. Anal..

[55]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[56]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[57]  Christoph Ortner,et al.  Positive Definiteness of the Blended Force-Based Quasicontinuum Method , 2011, Multiscale Model. Simul..

[58]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[59]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[60]  Christoph Ortner A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D , 2011, Math. Comput..

[61]  Ellad B. Tadmor,et al.  A Unified Interpretation of Stress in Molecular Systems , 2010, 1008.4819.

[62]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[63]  Lattice Green function for extended defect calculations: Computation and error estimation with long-range forces , 2006, cond-mat/0607388.

[64]  Pavel B. Bochev,et al.  Development of an Optimization-Based Atomistic-to-Continuum Coupling Method , 2013, LSSC.

[65]  J. E. Sinclair Improved Atomistic Model of a bcc Dislocation Core , 1971 .

[66]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[67]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[68]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[69]  Endre Süli,et al.  Atomistic-to-Continuum Coupling Approximation of a One-Dimensional Toy Model for Density Functional Theory , 2013, Multiscale Model. Simul..

[70]  J. Tinsley Oden,et al.  Error Control for Molecular Statics Problems , 2006 .

[71]  Pingbing Ming,et al.  Analysis of a One-Dimensional Nonlocal Quasi-Continuum Method , 2009, Multiscale Model. Simul..

[72]  Matti Ristinmaa,et al.  Multi-scale plasticity modeling: Coupled discrete dislocation and continuum crystal plasticity , 2008 .

[73]  E Weinan,et al.  Uniform Accuracy of the Quasicontinuum Method , 2006, MRS Online Proceedings Library.

[74]  Endre Süli,et al.  Finite Element Analysis of Cauchy–Born Approximations to Atomistic Models , 2013 .

[75]  Danny Perez,et al.  Hyper-QC: An accelerated finite-temperature quasicontinuum method using hyperdynamics , 2014 .

[76]  J. Q. Broughton,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[77]  E. Tadmor,et al.  Finite-temperature quasicontinuum: molecular dynamics without all the atoms. , 2005, Physical review letters.

[78]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[79]  Christoph Ortner,et al.  Construction and Sharp Consistency Estimates for Atomistic/Continuum Coupling Methods with General Interfaces: A Two-Dimensional Model Problem , 2012, SIAM J. Numer. Anal..

[80]  Serge Prudhomme,et al.  A force-based coupling scheme for peridynamics and classical elasticity , 2013 .

[81]  Brian Van Koten,et al.  Symmetries of 2-Lattices and Second Order Accuracy of the Cauchy-Born Model , 2012, Multiscale Model. Simul..

[82]  Florian Theil,et al.  Justification of the Cauchy–Born Approximation of Elastodynamics , 2013 .

[83]  Jianfeng Lu,et al.  Convergence of a Force‐Based Hybrid Method in Three Dimensions , 2013 .

[84]  Mihai Anitescu,et al.  A note on the regularity of reduced models obtained by nonlocal quasi-continuum-like approaches , 2009, Math. Program..

[85]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[86]  Ellad B. Tadmor,et al.  Modeling Materials: Continuum, Atomistic and Multiscale Techniques , 2011 .

[87]  R. Hardy,et al.  Formulas for determining local properties in molecular‐dynamics simulations: Shock waves , 1982 .

[88]  Robert E. Rudd,et al.  Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature , 2005 .

[89]  Xiantao Li,et al.  Efficient boundary conditions for molecular statics models of solids , 2009 .

[90]  Christoph Ortner,et al.  Construction and sharp consistency estimates for atomistic/continuum coupling methods with general interfaces: a 2D model problem , 2011 .

[91]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[92]  Paul T. Bauman,et al.  Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method , 2008 .

[93]  H. Kanzaki,et al.  Point defects in face-centred cubic lattice—I distortion around defects , 1957 .

[94]  M. Luskin,et al.  Formulation and optimization of the energy-based blended quasicontinuum method , 2011, 1112.2377.

[95]  Mitchell Luskin,et al.  Goal-oriented Atomistic-Continuum Adaptivity for the Quasicontinuum Approximation , 2007 .

[96]  Ping Lin,et al.  Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model , 2003, Math. Comput..

[97]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[98]  Pavel B. Bochev,et al.  Connecting Atomistic-to-Continuum Coupling and Domain Decomposition , 2008, Multiscale Model. Simul..

[99]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[100]  Siegfried Schmauder,et al.  Modelling Fracture Processes in Metals and Composite Materials / Modellieren von Bruchvorgängen in Metallen und Verbundwerkstoffen , 1989 .

[101]  E Weinan,et al.  The Kohn-Sham Equation for Deformed Crystals , 2012 .

[102]  M. Dobson There is no pointwise consistent quasicontinuum energy , 2011, 1109.1897.

[103]  Max Gunzburger,et al.  Bridging Methods for Atomistic-to-Continuum Coupling and Their Implementation , 2009 .

[104]  A. Voter Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events , 1997 .