Visualization in Connectomics

Connectomics is a branch of neuroscience that attempts to create a connectome, i.e., a complete map of the neuronal system and all connections between neuronal structures. This representation can be used to understand how functional brain states emerge from their underlying anatomical structures and how dysfunction and neuronal diseases arise. We review the current state-of-the-art of visualization and image processing techniques in the field of connectomics and describe a number of challenges. After a brief summary of the biological background and an overview of relevant imaging modalities, we review current techniques to extract connectivity information from image data at macro-, meso- and microscales. We also discuss data integration and neural network modeling, as well as the visualization, analysis and comparison of brain networks.

[1]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[2]  Danielle S Bassett,et al.  Brain graphs: graphical models of the human brain connectome. , 2011, Annual review of clinical psychology.

[3]  D. Long Networks of the Brain , 2011 .

[4]  Joachim M. Buhmann,et al.  Probabilistic image registration and anomaly detection by nonlinear warping , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Bart M. ter Haar Romeny,et al.  Fast and sleek glyph rendering for interactive HARDI data exploration , 2009, 2009 IEEE Pacific Visualization Symposium.

[6]  Joachim M. Buhmann,et al.  Neuron geometry extraction by perceptual grouping in ssTEM images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Prashant Nair Connectome , 2013, Proceedings of the National Academy of Sciences.

[8]  Markus Hadwiger,et al.  Ssecrett and NeuroTrace: Interactive Visualization and Analysis Tools for Large-Scale Neuroscience Data Sets , 2010, IEEE Computer Graphics and Applications.

[9]  Rolf Kötter,et al.  Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac Database , 2007, Neuroinformatics.

[10]  Alan C. Evans,et al.  Comparing functional connectivity via thresholding correlations and singular value decomposition , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[11]  Arnim Jenett,et al.  The Virtual Insect Brain protocol: creating and comparing standardized neuroanatomy , 2006, BMC Bioinformatics.

[12]  A. Cardona,et al.  An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy , 2010, PLoS biology.

[13]  Larry W. Swanson,et al.  The NeuARt II system: a viewing tool for neuroanatomical data based on published neuroanatomical atlases , 2006, BMC Bioinformatics.

[14]  Hans-Christian Hege,et al.  The Digital Bee Brain: Integrating and Managing Neurons in a Common 3D Reference System , 2010, Front. Syst. Neurosci..

[15]  Christopher Nimsky,et al.  Visualization of white matter tracts with wrapped streamlines , 2005, VIS 05. IEEE Visualization, 2005..

[16]  N. Kasthuri,et al.  Automating the Collection of Ultrathin Serial Sections for Large Volume TEM Reconstructions , 2006, Microscopy and Microanalysis.

[17]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[18]  Arthur W. Toga,et al.  Neuroinformatics Original Research Article , 2022 .

[19]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Edward T. Bullmore,et al.  Network-based statistic: Identifying differences in brain networks , 2010, NeuroImage.

[21]  J. Lichtman,et al.  Multicolor “DiOlistic” Labeling of the Nervous System Using Lipophilic Dye Combinations , 2000, Neuron.

[22]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[23]  Eric L. Miller,et al.  Segmentation fusion for connectomics , 2011, 2011 International Conference on Computer Vision.

[24]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[25]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[26]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[27]  A Maye,et al.  VISUALIZATION, RECONSTRUCTION, AND INTEGRATION OF NEURONAL STRUCTURES IN DIGITAL BRAIN ATLASES , 2006, The International journal of neuroscience.

[28]  Jonathan Nissanov,et al.  The Neuroterrain 3D Mouse Brain Atlas , 2008, Frontiers Neuroinformatics.

[29]  Jeff W. Lichtman,et al.  Multicolor "DiOlistic" Labeling Neurotechnique of the Nervous System Using Lipophilic Dye Combinations , 2000 .

[30]  Brian A. Wandell,et al.  Exploring connectivity of the brain's white matter with dynamic queries , 2005, IEEE Transactions on Visualization and Computer Graphics.

[31]  D C Van Essen,et al.  A graphical anatomical database of neural connectivity. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[33]  J. Livet,et al.  A technicolour approach to the connectome , 2008, Nature Reviews Neuroscience.

[34]  Gordon L. Kindlmann,et al.  Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[35]  Frans Vos,et al.  Fast and reproducible fiber bundle selection in DTI visualization , 2005, VIS 05. IEEE Visualization, 2005..

[36]  Jonathan D. Power,et al.  Functional Brain Networks Develop from a “Local to Distributed” Organization , 2009, PLoS Comput. Biol..

[37]  Horst Bischof,et al.  Neural Process Reconstruction from Sparse User Scribbles , 2011, MICCAI.

[38]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[39]  Ross T. Whitaker,et al.  Detection of neuron membranes in electron microscopy images using a serial neural network architecture , 2010, Medical Image Anal..

[40]  C. Niell,et al.  What can mice tell us about how vision works? , 2011, Trends in Neurosciences.

[41]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[42]  Marina Chicurel,et al.  Databasing the brain , 2000, Nature.

[43]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[44]  Ullrich Köthe,et al.  Carving: Scalable Interactive Segmentation of Neural Volume Electron Microscopy Images , 2011, MICCAI.

[45]  Volker Hartenstein,et al.  Neural Lineages of the Drosophila Brain: A Three-Dimensional Digital Atlas of the Pattern of Lineage Location and Projection at the Late Larval Stage , 2006, The Journal of Neuroscience.

[46]  N. Appel,et al.  Classical and Contemporary Histochemical Approaches for Evaluating Central Nervous System Microanatomy , 1997, Annals of the New York Academy of Sciences.

[47]  Hans-Christian Hege,et al.  Interactive Visualization – a Key Prerequisite for Reconstruction of Anatomically Realistic Neural Networks , 2012 .

[48]  Stephan Saalfeld,et al.  Globally optimal stitching of tiled 3D microscopic image acquisitions , 2009, Bioinform..

[49]  D. L. Schomer,et al.  Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields , 2012 .

[50]  Karl J. Friston,et al.  Brain connectivity workshop, Cambridge UK, may 2003 , 2007, Neuroinformatics.

[51]  Anja Kuß,et al.  Using Ontologies for the Visualization of Hierarchical Neuroanatomical Structures , 1970 .

[52]  Jan G. Bjaalie,et al.  Localization in the brain: new solutions emerging , 2002, Nature Reviews Neuroscience.

[53]  Robert van Liere,et al.  Visualization and Analysis of Large Data Collections: a Case Study Applied to Confocal Microscopy Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[54]  S. Petersen,et al.  The maturing architecture of the brain's default network , 2008, Proceedings of the National Academy of Sciences.

[55]  Charles D. Hansen,et al.  An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research , 2009, IEEE Transactions on Visualization and Computer Graphics.

[56]  Pascal Fua,et al.  Automated Reconstruction of Dendritic and Axonal Trees by Global Optimization with Geometric Priors , 2011, Neuroinformatics.

[57]  Stefan Bruckner,et al.  Instant Volume Visualization using Maximum Intensity Difference Accumulation , 2009, Comput. Graph. Forum.

[58]  Jos B. T. M. Roerdink,et al.  Data-Driven Visualization of Functional Brain Regions from Resting State fMRI Data , 2011, VMV.

[59]  Hans-Christian Hege,et al.  Interactive Visualization-A Key Prerequisite for Reconstruction and Analysis of Anatomically Realistic Neural Networks , 2012, Visualization in Medicine and Life Sciences II.

[60]  Moritz Helmstaedter,et al.  High-accuracy neurite reconstruction for high-throughput neuroanatomy , 2011, Nature Neuroscience.

[61]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[62]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[63]  Stefan Lang,et al.  Simulation of signal flow in 3D reconstructions of an anatomically realistic neural network in rat vibrissal cortex , 2011, Neural Networks.

[64]  Joachim M. Buhmann,et al.  Geometrical Consistent 3D Tracing of Neuronal Processes in ssTEM Data , 2010, MICCAI.

[65]  B. Sakmann,et al.  Journal of Neuroscience Methods Automated Three-dimensional Detection and Counting of Neuron Somata , 2022 .

[66]  Charl P. Botha,et al.  Visual Analysis of Integrated Resting State Functional Brain Connectivity and Anatomy , 2010, VCBM.

[67]  Cornelis J Stam,et al.  Graph theoretical analysis of complex networks in the brain , 2007, Nonlinear biomedical physics.

[68]  J. Lichtman,et al.  Optical sectioning microscopy , 2005, Nature Methods.

[69]  Jan Kautz,et al.  Display-aware image editing , 2011, 2011 IEEE International Conference on Computational Photography (ICCP).

[70]  Jean-Francois Mangin,et al.  Fiber Tracking in q-Ball Fields Using Regularized Particle Trajectories , 2005, IPMI.

[71]  David H. Laidlaw,et al.  Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[72]  Eric L. Miller,et al.  Multiphase geometric couplings for the segmentation of neural processes , 2009, CVPR.

[73]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[74]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[75]  T. Mackay,et al.  Of flies and man: Drosophila as a model for human complex traits. , 2006, Annual review of genomics and human genetics.

[76]  Leslie G. Valiant,et al.  A Quantitative Theory of Neural Computation , 2006, Biological Cybernetics.

[77]  Edward T. Bullmore,et al.  Schizophrenia, neuroimaging and connectomics , 2012, NeuroImage.

[78]  Yong Liu,et al.  Altered Anatomical Network in Early Blindness Revealed by Diffusion Tensor Tractography , 2009, PloS one.

[79]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[80]  T. Ideker,et al.  Modeling cellular machinery through biological network comparison , 2006, Nature Biotechnology.

[81]  J. Thiran,et al.  Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[82]  Anne E Carpenter,et al.  Visualization of image data from cells to organisms , 2010, Nature Methods.

[83]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Bart M. ter Haar Romeny,et al.  Fused DTI/HARDI Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[85]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[86]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[87]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[88]  Natasha M. Maurits,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization (2007) Functional Unit Maps for Data-driven Visualization of High-density Eeg Coherence , 2022 .

[89]  Rolf Kötter,et al.  Matching Spatial with Ontological Brain Regions using Java Tools for Visualization, Database Access, and Integrated Data Analysis , 2009, Neuroinformatics.

[90]  Louis K. Scheffer,et al.  Semi-automated reconstruction of neural circuits using electron microscopy , 2010, Current Opinion in Neurobiology.

[91]  Jesper Fredriksson,et al.  Design of an Internet accessible visual human brain database system , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[92]  Ronen Basri,et al.  Co-clustering of image segments using convex optimization applied to EM neuronal reconstruction , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[93]  Natasha M. Maurits,et al.  Data-Driven Visualization and Group Analysis of Multichannel EEG Coherence with Functional Units , 2008, IEEE Transactions on Visualization and Computer Graphics.

[94]  Gabriel Zachmann,et al.  Visual computing for medical diagnosis and treatment , 2009, Comput. Graph..

[95]  H. Sebastian Seung,et al.  Boundary Learning by Optimization with Topological Constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[96]  Michael ten Caat Multichannel EEG Visualization , 2008 .

[97]  Lydia Ng,et al.  Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain , 2008, BMC Bioinformatics.

[98]  Amelio Vázquez Reina,et al.  Multiphase geometric couplings for the segmentation of neural processes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[99]  Marcus Kaiser,et al.  A tutorial in connectome analysis: Topological and spatial features of brain networks , 2011, NeuroImage.

[100]  H Burkhardt,et al.  XuvTools: free, fast and reliable stitching of large 3D datasets , 2009, Journal of microscopy.

[101]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[102]  Hans-Peter Seidel,et al.  Topological Visualization of Brain Diffusion MRI Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[103]  David H. Laidlaw,et al.  An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications , 2006, Visualization and Processing of Tensor Fields.

[104]  Hans-Christian Hege,et al.  Ontology-Based Visualization of Hierarchical Neuroanatomical Structures , 2008, VCBM.

[105]  Steffen Prohaska,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Effective Techniques to Visualize Filament-surface Relationships , 2022 .

[106]  J C Fiala,et al.  Reconstruct: a free editor for serial section microscopy , 2005, Journal of microscopy.

[107]  Sheng-Chuan Wang,et al.  The Neuron Navigator: Exploring the information pathway through the neural maze , 2011, 2011 IEEE Pacific Visualization Symposium.

[108]  Kevan A. C. Martin,et al.  The Synaptic Organization of the Claustral Projection to the Cat's Visual Cortex , 2010, The Journal of Neuroscience.

[109]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[110]  Ya-Yun Wang,et al.  Databasing the Brain: From Data to Knowledge (Neuroinformatics), S.H. Koslow, S. Subramaniam (Eds.). Wiley-Liss/John Wiley & Sons (2005), 523 pp., Price: £79.99, ISBN: 0-471-30921-4 , 2010 .

[111]  Natasha M. Maurits,et al.  Graph averaging as a means to compare multichannel EEG coherence networks and its application to the study of mental fatigue and neurodegenerative disease , 2011, Comput. Graph..

[112]  Tobias Isenberg,et al.  Depth-Dependent Halos: Illustrative Rendering of Dense Line Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[113]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.