Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness

[1]  Conor Liston,et al.  Projections from neocortex mediate top-down control of memory retrieval , 2015, Nature.

[2]  S. Tonegawa,et al.  Memory Engram Cells Have Come of Age , 2015, Neuron.

[3]  Gary A. Kane,et al.  Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells , 2015, Front. Syst. Neurosci..

[4]  A. Fenton,et al.  Experience-Dependent Regulation of Dentate Gyrus Excitability by Adult-Born Granule Cells , 2015, The Journal of Neuroscience.

[5]  P. Frankland,et al.  Development of Adult-Generated Cell Connectivity with Excitatory and Inhibitory Cell Populations in the Hippocampus , 2015, The Journal of Neuroscience.

[6]  Wei Deng,et al.  Enrichment rescues contextual discrimination deficit associated with immediate shock , 2015, Hippocampus.

[7]  K. Conzelmann,et al.  A Critical Period for Experience-Dependent Remodeling of Adult-Born Neuron Connectivity , 2015, Neuron.

[8]  E. Kropff,et al.  Delayed Coupling to Feedback Inhibition during a Critical Period for the Integration of Adult-Born Granule Cells , 2015, Neuron.

[9]  Peyman Golshani,et al.  CREB Regulates Memory Allocation in the Insular Cortex , 2014, Current Biology.

[10]  P. Golshani,et al.  Direct Reactivation of a Coherent Neocortical Memory of Context , 2014, Neuron.

[11]  Máté Neubrandt,et al.  Adult-born granule cells mature through two functionally distinct states , 2014, eLife.

[12]  Kenji F. Tanaka,et al.  Hippocampal Memory Traces Are Differentially Modulated by Experience, Time, and Adult Neurogenesis , 2014, Neuron.

[13]  Sadegh Nabavi,et al.  Engineering a memory with LTD and LTP , 2014, Nature.

[14]  Blake A. Richards,et al.  Hippocampal Neurogenesis Regulates Forgetting During Adulthood and Infancy , 2014, Science.

[15]  F. Gage,et al.  Temporally selective contextual encoding in the dentate gyrus of the hippocampus , 2014, Nature Communications.

[16]  Xiangmin Xu,et al.  Adult neurogenesis modifies excitability of the dentate gyrus , 2013, Front. Neural Circuits.

[17]  Adam Santoro,et al.  Reassessing pattern separation in the dentate gyrus , 2013, Front. Behav. Neurosci..

[18]  S. Tonegawa,et al.  Creating a False Memory in the Hippocampus , 2013, Science.

[19]  Fred H. Gage,et al.  Molecular layer perforant path-associated cells contribute to feed-forward inhibition in the adult dentate gyrus , 2013, Proceedings of the National Academy of Sciences.

[20]  Laura A. Ewell,et al.  Neurogenesis in the dentate gyrus: carrying the message or dictating the tone , 2013, Front. Neurosci..

[21]  Mark Mayford,et al.  Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice , 2013, eLife.

[22]  Magdalena Götz,et al.  Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb , 2013, Proceedings of the National Academy of Sciences.

[23]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[24]  R. Morris Neurobiology of Learning and Memory 72 , 2013 .

[25]  P. Frankland,et al.  Optical controlling reveals time-dependent roles for adult-born dentate granule cells , 2012, Nature Neuroscience.

[26]  P. Argibay,et al.  Neurogenesis interferes with the retrieval of remote memories: Forgetting in neurocomputational terms , 2012, Cognition.

[27]  A. Fenton,et al.  Adult‐born hippocampal neurons promote cognitive flexibility in mice , 2012, Hippocampus.

[28]  David C Rowland,et al.  Generation of a Synthetic Memory Trace , 2012, Science.

[29]  Joshua P. Neunuebel,et al.  Spatial Firing Correlates of Physiologically Distinct Cell Types of the Rat Dentate Gyrus , 2012, The Journal of Neuroscience.

[30]  A. F. Schinder,et al.  Unique Processing During a Period of High Excitation/Inhibition Balance in Adult-Born Neurons , 2012, Science.

[31]  S. Tonegawa,et al.  Young Dentate Granule Cells Mediate Pattern Separation, whereas Old Granule Cells Facilitate Pattern Completion , 2012, Cell.

[32]  K. Deisseroth,et al.  Optogenetic stimulation of a hippocampal engram activates fear memory recall , 2012, Nature.

[33]  James B Aimone,et al.  Development of GABAergic inputs controls the contribution of maturing neurons to the adult hippocampal network , 2012, Proceedings of the National Academy of Sciences.

[34]  S. Tronel,et al.  Adult‐born neurons are necessary for extended contextual discrimination , 2012, Hippocampus.

[35]  Diano F. Marrone,et al.  Disambiguating the similar: The dentate gyrus and pattern separation , 2012, Behavioural Brain Research.

[36]  R. Hen,et al.  Effects of adult‐generated granule cells on coordinated network activity in the dentate gyrus , 2012, Hippocampus.

[37]  C. Stark,et al.  Pattern separation in the hippocampus , 2011, Trends in Neurosciences.

[38]  P. Frankland,et al.  Stimulation of Entorhinal Cortex Promotes Adult Neurogenesis and Facilitates Spatial Memory , 2011, The Journal of Neuroscience.

[39]  F. Gage,et al.  Resolving New Memories: A Critical Look at the Dentate Gyrus, Adult Neurogenesis, and Pattern Separation , 2011, Neuron.

[40]  Donald A. Wilson,et al.  Pattern Separation: A Common Function for New Neurons in Hippocampus and Olfactory Bulb , 2011, Neuron.

[41]  G. Ming,et al.  Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions , 2011, Neuron.

[42]  A. F. Schinder,et al.  The Timing for Neuronal Maturation in the Adult Hippocampus Is Modulated by Local Network Activity , 2011, The Journal of Neuroscience.

[43]  J. Parent,et al.  Compensatory network changes in the dentate gyrus restore long-term potentiation following ablation of neurogenesis in young-adult mice , 2011, Proceedings of the National Academy of Sciences.

[44]  A. Fenton,et al.  Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation , 2011, Nature.

[45]  P. Verschure,et al.  The Mechanism of Rate Remapping in the Dentate Gyrus , 2010, Neuron.

[46]  B L McNaughton,et al.  Hippocampal granule cells opt for early retirement , 2010, Hippocampus.

[47]  C. Barnes,et al.  Pattern separation deficits may contribute to age-associated recognition impairments. , 2010, Behavioral neuroscience.

[48]  Lin Tian,et al.  Functional imaging of hippocampal place cells at cellular resolution during virtual navigation , 2010, Nature Neuroscience.

[49]  F. Gage,et al.  Adult neurogenesis: integrating theories and separating functions , 2010, Trends in Cognitive Sciences.

[50]  F. Gage,et al.  New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? , 2010, Nature Reviews Neuroscience.

[51]  Lisa M. Saksida,et al.  Running enhances spatial pattern separation in mice , 2010, Proceedings of the National Academy of Sciences.

[52]  Thomas G. Oertner,et al.  Temporal Control of Immediate Early Gene Induction by Light , 2009, PloS one.

[53]  Jason S. Snyder,et al.  Adult-Born Hippocampal Neurons Are More Numerous, Faster Maturing, and More Involved in Behavior in Rats than in Mice , 2009, The Journal of Neuroscience.

[54]  F. Gage,et al.  Adult-Born Hippocampal Dentate Granule Cells Undergoing Maturation Modulate Learning and Memory in the Brain , 2009, Journal of Neuroscience.

[55]  Jason S. Snyder,et al.  The effects of exercise and stress on the survival and maturation of adult‐generated granule cells , 2009, Hippocampus.

[56]  Alcino J. Silva,et al.  CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala , 2009, Nature Neuroscience.

[57]  P. Argibay,et al.  A putative role for neurogenesis in neurocomputational terms: Inferences from a hippocampal model , 2009, Cognition.

[58]  L. Saksida,et al.  A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation , 2009, Science.

[59]  Donald A. Wilson,et al.  Pattern Separation and Completion in Olfaction , 2009, Annals of the New York Academy of Sciences.

[60]  G. Kempermann,et al.  Adult-Generated Hippocampal Neurons Allow the Flexible Use of Spatially Precise Learning Strategies , 2009, PloS one.

[61]  S. Trouche,et al.  Recruitment of adult-generated neurons into functional hippocampal networks contributes to updating and strengthening of spatial memory , 2009, Proceedings of the National Academy of Sciences.

[62]  Larry R Squire,et al.  Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. , 2009, Learning & memory.

[63]  Janet Wiles,et al.  Computational Influence of Adult Neurogenesis on Memory Encoding , 2009, Neuron.

[64]  Bruno Bontempi,et al.  Selective Erasure of a Fear Memory , 2009, Science.

[65]  Donald A Wilson,et al.  Olfactory perceptual stability and discrimination , 2008, Nature Neuroscience.

[66]  S. Ge,et al.  Synaptic integration and plasticity of new neurons in the adult hippocampus , 2008, The Journal of physiology.

[67]  F. Gage,et al.  Neurons born in the adult dentate gyrus form functional synapses with target cells , 2008, Nature Neuroscience.

[68]  D. Dupret,et al.  Spatial Relational Memory Requires Hippocampal Adult Neurogenesis , 2008, PloS one.

[69]  Gordon Winocur,et al.  The effects of running and of inhibiting adult neurogenesis on learning and memory in rats , 2008, The European journal of neuroscience.

[70]  F. Gage,et al.  Mechanisms and Functional Implications of Adult Neurogenesis , 2008, Cell.

[71]  Michael R. Hunsaker,et al.  The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. , 2008, Behavioral neuroscience.

[72]  Rosemary A. Cowell,et al.  Perirhinal cortex resolves feature ambiguity in configural object recognition and perceptual oddity tasks. , 2007, Learning & memory.

[73]  Michael R. Hunsaker,et al.  Dissociations of the medial and lateral perforant path projections into dorsal DG, CA3, and CA1 for spatial and nonspatial (visual object) information processing. , 2007, Behavioral neuroscience.

[74]  M. Wilson,et al.  Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation in the Hippocampal Network , 2007, Science.

[75]  E. Kandel,et al.  Paradoxical influence of hippocampal neurogenesis on working memory , 2007, Proceedings of the National Academy of Sciences.

[76]  Rosemary A. Cowell,et al.  Perceptual Functions of Perirhinal Cortex in Rats: Zero-Delay Object Recognition and Simultaneous Oddity Discriminations , 2007, The Journal of Neuroscience.

[77]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[78]  Afra H. Wang,et al.  Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus , 2007, Nature Neuroscience.

[79]  F. Gage,et al.  Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo , 2006, Nature Protocols.

[80]  John F. Guzowski,et al.  Neuronal Competition and Selection During Memory Formation , 2006, Science.

[81]  R. Kesner A behavioral analysis of dentate gyrus function. , 2007, Progress in brain research.

[82]  E. Rolls,et al.  A computational theory of hippocampal function, and empirical tests of the theory , 2006, Progress in Neurobiology.

[83]  Laurenz Wiskott,et al.  A functional hypothesis for adult hippocampal neurogenesis: Avoidance of catastrophic interference in the dentate gyrus , 2006, Hippocampus.

[84]  A. F. Schinder,et al.  Neuronal Differentiation in the Adult Hippocampus Recapitulates Embryonic Development , 2005, The Journal of Neuroscience.

[85]  Bruce L. McNaughton,et al.  Progressive Transformation of Hippocampal Neuronal Representations in “Morphed” Environments , 2005, Neuron.

[86]  B. McNaughton,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005, Science.

[87]  E. Save,et al.  Attractors in Memory , 2005, Science.

[88]  Neil Burgess,et al.  Attractor Dynamics in the Hippocampal Representation of the Local Environment , 2005, Science.

[89]  S. Becker A computational principle for hippocampal learning and neurogenesis , 2005, Hippocampus.

[90]  B. McNaughton,et al.  Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience , 2005, Hippocampus.

[91]  P. Jonas,et al.  Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus , 2004, Nature.

[92]  R. Kesner,et al.  Encoding versus retrieval of spatial memory: Double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus , 2004, Hippocampus.

[93]  Paul E. Gilbert,et al.  Recognition memory for complex visual discriminations is influenced by stimulus interference in rodents with perirhinal cortex damage. , 2003, Learning & memory.

[94]  G. Kempermann,et al.  Adult‐born hippocampal neurons mature into activity‐dependent responsiveness , 2003, The European journal of neuroscience.

[95]  H. Kurzen,et al.  Inhibition of angiogenesis by non-toxic doses of temozolomide , 2003, Anti-cancer drugs.

[96]  M. Monje,et al.  Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. , 2003, Cancer research.

[97]  M. Monje,et al.  Irradiation induces neural precursor-cell dysfunction , 2002, Nature Medicine.

[98]  G. Buzsáki,et al.  Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo , 2002, Nature Neuroscience.

[99]  Paul E. Gilbert,et al.  The Amygdala but Not the Hippocampus Is Involved in Pattern Separation Based on Reward Value , 2002, Neurobiology of Learning and Memory.

[100]  K M Gothard,et al.  Dentate Gyrus and CA1 Ensemble Activity during Spatial Reference Frame Shifts in the Presence and Absence of Visual Input , 2001, The Journal of Neuroscience.

[101]  E. Gould,et al.  Neurogenesis in the adult is involved in the formation of trace memories , 2001, Nature.

[102]  Paul E. Gilbert,et al.  Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1 , 2001, Hippocampus.

[103]  D. Henze,et al.  Revisiting the role of the hippocampal mossy fiber synapse , 2001, Hippocampus.

[104]  J. Lassalle,et al.  Reversible Inactivation of the Hippocampal Mossy Fiber Synapses in Mice Impairs Spatial Learning, but neither Consolidation nor Memory Retrieval, in the Morris Navigation Task , 2000, Neurobiology of Learning and Memory.

[105]  J. Lisman Relating Hippocampal Circuitry to Function Recall of Memory Sequences by Reciprocal Dentate–CA3 Interactions , 1999, Neuron.

[106]  G Buzsáki,et al.  GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus , 1998, The Journal of Neuroscience.

[107]  M J West,et al.  Neuron numbers in the presubiculum, parasubiculum, and entorhinal area of the rat , 1997, The Journal of comparative neurology.

[108]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[109]  James L. McClelland,et al.  Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade‐off , 1994, Hippocampus.

[110]  E. Rolls,et al.  Computational analysis of the role of the hippocampus in memory , 1994, Hippocampus.

[111]  B. McNaughton,et al.  Spatial selectivity of unit activity in the hippocampal granular layer , 1993, Hippocampus.

[112]  D. Amaral,et al.  Neurons, numbers and the hippocampal network. , 1990, Progress in brain research.

[113]  Michael McCloskey,et al.  Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem , 1989 .

[114]  D. Amit,et al.  Statistical mechanics of neural networks near saturation , 1987 .

[115]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[116]  D Marr,et al.  Simple memory: a theory for archicortex. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[117]  Ueber die Wärme als Aequivalent der Arbeit , 1855 .