Improved electromechanical behavior in castable dielectric elastomer actuators

Non-viscoelastic castable elastomers are replacing the polyacrylate VHB films in the new generations of dielectric elastomer actuators (DEAs) to achieve fast and reliable actuation. We introduce the optimum prestretch conditions to enhance the electromechanical behavior of the castable DEAs resulting in large actuation strain. For castable actuator in which the thickness is selected independent of the prestretch, uniaxial prestretch mode offers the highest actuation strain in the transverse direction compared to biaxial and pure shear. We experimentally demonstrate that miniaturization hinders the loss of tension and up to 85% linear actuation strain is generated with a 300 × 300 μm2 polydimethylsiloxanes-based DEA.

[1]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[2]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[3]  S. Dubowsky,et al.  Large-scale failure modes of dielectric elastomer actuators , 2006 .

[4]  Patrick Lochmatter,et al.  An arm wrestling robot driven by dielectric elastomer actuators , 2007 .

[5]  Z. Suo,et al.  Method to analyze electromechanical stability of dielectric elastomers , 2007 .

[6]  Macromol. Rapid Commun. 8/2008 , 2008 .

[7]  P. Dubois,et al.  Large-Stroke Dielectric Elastomer Actuators With Ion-Implanted Electrodes , 2009, Journal of Microelectromechanical Systems.

[8]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[9]  Z. Suo Theory of dielectric elastomers , 2010 .

[10]  Z. Suo,et al.  Theory of dielectric elastomers capable of giant deformation of actuation. , 2010, Physical review letters.

[11]  Z. Suo,et al.  Mechanisms of Large Actuation Strain in Dielectric Elastomers , 2011 .

[12]  Choon Chiang Foo,et al.  Giant, voltage-actuated deformation of a dielectric elastomer under dead load , 2012 .

[13]  Herbert Shea,et al.  Microfabrication and characterization of an array of dielectric elastomer actuators generating uniaxial strain to stretch individual cells , 2012 .

[14]  Samuel Rosset,et al.  The need for speed , 2012, Smart Structures.

[15]  C. Keplinger,et al.  Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation , 2012 .

[16]  Z. Suo,et al.  Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers , 2012 .

[17]  Jonathan Rossiter,et al.  Harnessing electromechanical membrane wrinkling for actuation , 2012 .

[18]  Z. Suo,et al.  Complex interplay of nonlinear processes in dielectric elastomers. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Herbert Shea,et al.  An array of 100 μm × 100 μm dielectric elastomer actuators with 80% strain for tissue engineering applications , 2012 .

[20]  H. Shea,et al.  Flexible and stretchable electrodes for dielectric elastomer actuators , 2012, Applied Physics A.

[21]  S. Wereley,et al.  soft matter , 2019, Science.