A novel error indicator and an adaptive refinement technique using the scaled boundary finite element method

Abstract In this paper, an adaptive refinement strategy based on the scaled boundary finite element method on quadtree meshes for linear elasticity problems is discussed. Within this framework, the elements with hanging nodes are treated as polygonal elements and thus does not require special treatment. The adaptive refinement is supplemented with a novel error indicator. The local error is estimated directly from the solution of the scaled boundary governing equations. The salient feature is that it does not require any stress recovery techniques. The efficacy and the robustness of the proposed approach are demonstrated with a few numerical examples.

[1]  John P. Wolf,et al.  Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method , 2002 .

[2]  Rod W. Douglass,et al.  Laplace-Beltrami enhancement for unstructured two-dimensional meshes having dendritic elements and boundary node movement , 2012, J. Comput. Appl. Math..

[3]  K. Y. Sze,et al.  Adaptive refinement analysis using hybrid-stress transition elements , 2006 .

[4]  Naim Hossain,et al.  Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes , 2018 .

[5]  M. Ainsworth,et al.  Aspects of an adaptive hp-finite element method : Adaptive strategy, conforming approximation and efficient solvers , 1997 .

[6]  Leszek Demkowicz,et al.  Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .

[7]  Sundararajan Natarajan,et al.  Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modelling , 2015 .

[8]  O. C. Zienkiewicz,et al.  Adaptive techniques in the finite element method , 1988 .

[9]  J. Z. Zhu,et al.  Effective and practical h–p‐version adaptive analysis procedures for the finite element method , 1989 .

[10]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[11]  Ean Tat Ooi,et al.  A hybrid finite element-scaled boundary finite element method for crack propagation modelling , 2010 .

[12]  N. Sukumar,et al.  Extended finite element method on polygonal and quadtree meshes , 2008 .

[13]  J. Wolf,et al.  The scaled boundary finite element method , 2004 .

[14]  Timon Rabczuk,et al.  Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation , 2017 .

[15]  B. Szabó,et al.  p‐convergent finite element approximations in fracture mechanics , 1978 .

[16]  J. Wolf,et al.  A virtual work derivation of the scaled boundary finite-element method for elastostatics , 2002 .

[17]  Deborah Greaves,et al.  Quadtree grid generation: Information handling, boundary fitting and CFD applications , 1996 .

[18]  Ivo Dolezel,et al.  Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..

[19]  Michael Feischl,et al.  Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data☆ , 2014, J. Comput. Appl. Math..

[20]  H. Nguyen-Xuan,et al.  Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling , 2017 .

[21]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[22]  Timon Rabczuk,et al.  Damage and fracture algorithm using the screened Poisson equation and local remeshing , 2016 .

[23]  Liping Liu THEORY OF ELASTICITY , 2012 .

[24]  A. Gupta A finite element for transition from a fine to a coarse grid , 1978 .

[25]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[26]  Rachid Touzani,et al.  MESH r-ADAPTATION FOR UNILATERAL CONTACT PROBLEMS † , 2002 .

[27]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[28]  Peter H. N. de With,et al.  Depth-Image Compression Based on an R-D Optimized Quadtree Decomposition for the Transmission of Multiview Images , 2007, 2007 IEEE International Conference on Image Processing.

[29]  Chongmin Song A matrix function solution for the scaled boundary finite-element equation in statics , 2004 .

[30]  Li Hua,et al.  New method for graded mesh generation of quadrilateral finite elements , 1996 .

[31]  F. Tin-Loi,et al.  A definition and evaluation procedure of generalized stress intensity factors at cracks and multi-material wedges , 2010 .

[32]  Pascal J. Frey,et al.  Fast Adaptive Quadtree Mesh Generation , 1998, IMR.

[33]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .

[34]  Denise Burgarelli,et al.  A new adaptive mesh refinement strategy for numerically solving evolutionary PDE's , 2006 .

[35]  John P. Wolf,et al.  Stress recovery and error estimation for the scaled boundary finite‐element method , 2002 .

[36]  Y. C. Liu,et al.  Assessment of discretized errors and adaptive refinement with quadrilateral finite elements , 1992 .

[37]  Stéphane Popinet,et al.  Quadtree-adaptive tsunami modelling , 2011 .